Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
32db8db5
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
32db8db5
编写于
10月 17, 2017
作者:
G
gongweibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bugs
上级
45f16c90
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
120 addition
and
74 deletion
+120
-74
paddle/operators/block_expand_op.cc
paddle/operators/block_expand_op.cc
+7
-2
paddle/operators/block_expand_op.h
paddle/operators/block_expand_op.h
+8
-1
python/paddle/v2/framework/tests/test_block_expand_op.py
python/paddle/v2/framework/tests/test_block_expand_op.py
+105
-71
未找到文件。
paddle/operators/block_expand_op.cc
浏览文件 @
32db8db5
...
...
@@ -23,6 +23,7 @@ class BlockExpandOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
printf
(
"op infershape
\n
"
);
using
namespace
framework
;
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input of BlockExpandOp should not be null."
);
...
...
@@ -33,6 +34,7 @@ class BlockExpandOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
in_dim
.
size
(),
4
,
"Input format must be NCHW."
);
PADDLE_ENFORCE_GE
(
in_dim
[
0
],
1
,
"Input batchsize must >= 1."
);
printf
(
"op infershape2
\n
"
);
int
block_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"blockHeight"
);
int
block_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"blockWidth"
);
int
stride_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"strideHeight"
);
...
...
@@ -42,8 +44,8 @@ class BlockExpandOp : public framework::OperatorWithKernel {
int
N
=
in_dim
[
0
];
int
C
=
in_dim
[
1
];
int
img_height
=
in_dim
[
3
];
int
img_width
=
in_dim
[
4
];
int
img_height
=
in_dim
[
2
];
int
img_width
=
in_dim
[
3
];
int
output_height
=
0
;
int
output_width
=
0
;
...
...
@@ -58,6 +60,8 @@ class BlockExpandOp : public framework::OperatorWithKernel {
// reshape into [seqLength, stepSize], where seqLength is equal
// output_height * output_width, stepSize is equal
// input_channels * blockHeight * blockWidth
printf
(
"N:%d, o_h:%d o_w:%d C:%d b_h:%d b_w:%d
\n
"
,
N
,
output_height
,
output_width
,
C
,
block_height
,
block_width
);
ctx
->
SetOutputDim
(
"Out"
,
{
N
,
output_height
,
output_width
,
C
,
block_height
,
block_width
});
...
...
@@ -77,6 +81,7 @@ class BlockExpandOpMaker : public framework::OpProtoAndCheckerMaker {
H: height
W: width
)DOC"
);
printf
(
"opmakeer
\n
"
);
AddOutput
(
"Out"
,
"(LodTensor)The output data of block_expand op,"
);
AddAttr
<
int
>
(
"blockHeight"
,
"(int)height of block."
);
AddAttr
<
int
>
(
"blockWidth"
,
"(int)width of block."
);
...
...
paddle/operators/block_expand_op.h
浏览文件 @
32db8db5
...
...
@@ -44,7 +44,7 @@ class BlockExpandKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
namespace
framework
;
const
Tensor
*
in
=
ctx
.
Input
<
Tensor
>
(
"
input
"
);
const
Tensor
*
in
=
ctx
.
Input
<
Tensor
>
(
"
X
"
);
Tensor
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -68,7 +68,11 @@ class BlockExpandKernel : public framework::OpKernel<T> {
img_height
,
img_width
,
block_height
,
block_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
outputHeight
,
outputWidth
);
printf
(
"N:%d, o_h:%d o_w:%d C:%d b_h:%d b_w:%d
\n
"
,
N
,
outputHeight
,
outputWidth
,
C
,
block_height
,
block_width
);
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
printf
(
"i:%d
\n
"
,
i
);
Tensor
src
=
in
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
({
C
,
img_height
,
img_width
});
Tensor
dst
=
out
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
{
outputHeight
,
outputWidth
,
C
,
block_height
,
block_width
});
...
...
@@ -109,6 +113,9 @@ class BlockExpandGradKernel : public framework::OpKernel<T> {
img_height
,
img_width
,
block_height
,
block_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
outputHeight
,
outputWidth
);
printf
(
"N:%d, o_h:%d o_w:%d C:%d b_h:%d b_w:%d
\n
"
,
N
,
outputHeight
,
outputWidth
,
C
,
block_height
,
block_width
);
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
Tensor
dst
=
out_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
({
C
,
img_height
,
img_width
});
...
...
python/paddle/v2/framework/tests/test_block_expand_op.py
浏览文件 @
32db8db5
...
...
@@ -3,119 +3,153 @@ import numpy as np
from
op_test
import
OpTest
def
get_output_shape
(
attrs
,
X
):
img_height
=
X
.
shape
[
2
]
img_width
=
X
.
shpe
[
3
]
padding_height
=
attrs
[
'padding_height'
]
padding_width
=
attrs
[
'padding_width'
]
block_height
=
attrs
[
'block_height'
]
block_width
=
attrs
[
'block_width'
]
stride_height
=
attrs
[
'stride_height'
]
stride_width
=
attrs
[
'stride_width'
]
output_height
=
\
def
get_output_shape
(
attrs
,
x
):
imgHeight
=
x
.
shape
[
1
]
imgWidth
=
x
.
shape
[
2
]
paddingHeight
=
attrs
[
'paddingHeight'
]
paddingWidth
=
attrs
[
'paddingWidth'
]
blockHeight
=
attrs
[
'blockHeight'
]
blockWidth
=
attrs
[
'blockWidth'
]
strideHeight
=
attrs
[
'strideHeight'
]
strideWidth
=
attrs
[
'strideWidth'
]
outputHeight
=
\
1
+
\
(
img
_height
+
2
*
padding_height
-
block_height
+
stride_h
eight
-
1
)
/
\
stride
_h
eight
(
img
Height
+
2
*
paddingHeight
-
blockHeight
+
strideH
eight
-
1
)
/
\
stride
H
eight
output
_w
idth
=
\
output
W
idth
=
\
1
+
\
(
img
_width
+
2
*
padding_width
-
block_width
+
stride_w
idth
-
1
)
/
\
stride
_w
idth
(
img
Width
+
2
*
paddingWidth
-
blockWidth
+
strideW
idth
-
1
)
/
\
stride
W
idth
return
output
_height
,
output_w
idth
return
output
Height
,
outputW
idth
"""
im
g
: {CHW}
im: {CHW}
col:
{output
_height, output_w
idth, inputChannels, filterHeight, filterWidth}
{output
Height, outputW
idth, inputChannels, filterHeight, filterWidth}
"""
def
img2col
(
attrs
,
im
,
col
):
input_channels
=
im
.
shape
.
dims
[
0
]
input_height
=
im
.
shape
.
dims
[
1
]
input_width
=
im
.
shape
.
dims
[
2
]
filter_height
=
col
.
shape
.
dims
[
3
]
filter_width
=
col
.
shape
.
dims
[
4
]
output_height
=
col
.
shape
.
dims
[
0
]
output_width
=
col
.
shape
.
dims
[
1
]
def
im2col
(
attrs
,
im
,
col
):
input_channels
=
im
.
shape
[
0
]
inputHeight
=
im
.
shape
[
1
]
inputWidth
=
im
.
shape
[
2
]
outputHeight
=
col
.
shape
[
0
]
outputWidth
=
col
.
shape
[
1
]
filterHeight
=
col
.
shape
[
3
]
filterWidth
=
col
.
shape
[
4
]
for
col_row_idx
in
range
(
0
,
output_height
):
for
col_col_idx
in
range
(
0
,
output_width
):
strideHeight
=
attrs
[
'strideHeight'
]
strideWidth
=
attrs
[
'strideWidth'
]
paddingHeight
=
attrs
[
'paddingHeight'
]
paddingWidth
=
attrs
[
'paddingWidth'
]
for
col_row_idx
in
range
(
0
,
outputHeight
):
for
col_col_idx
in
range
(
0
,
outputWidth
):
for
channel
in
range
(
0
,
input_channels
):
for
filter_row_idx
in
range
(
0
,
filter_height
):
for
filter_col_idx
in
range
(
0
,
filter_width
):
im_row_offset
=
col_row_idx
*
stride_height
\
+
filter_row_idx
-
padding_height
im_col_offset
=
col_col_idx
*
stride_width
\
+
filter_col_idx
-
padding_width
if
(
im_row_offset
<
0
or
im_row_offset
>=
input_height
or
for
filter_row_idx
in
range
(
0
,
filterHeight
):
for
filter_col_idx
in
range
(
0
,
filterWidth
):
im_row_offset
=
col_row_idx
*
strideHeight
\
+
filter_row_idx
-
paddingHeight
im_col_offset
=
col_col_idx
*
strideWidth
\
+
filter_col_idx
-
paddingWidth
if
(
im_row_offset
<
0
or
im_row_offset
>=
inputHeight
or
im_col_offset
<
0
or
im_col_offset
>=
input
_w
idth
):
col
[
col_row_idx
][
col_col_idx
][
channel
][
im_col_offset
>=
input
W
idth
):
col
[
col_row_idx
][
col_col_idx
][
channel
][
\
filter_row_idx
][
filter_col_idx
]
=
0.0
else
:
im_offset
=
(
channel
*
input_height
+
im_row_offset
)
*
input_width
+
im_col_offset
col
[
col_row_idx
][
col_col_idx
][
channel
][
filter_row_idx
][
filter_col_idx
]
=
im
[
channel
][
im_offset
=
(
channel
*
inputHeight
+
im_row_offset
\
)
*
inputWidth
+
im_col_offset
col
[
col_row_idx
][
col_col_idx
][
channel
][
\
filter_row_idx
][
filter_col_idx
]
=
im
[
channel
][
\
im_row_offset
][
im_col_offset
]
"""
img: {CHW}
col:
{output
_height, output_w
idth, inputChannels, filterHeight, filterWidth}
{output
Height, outputW
idth, inputChannels, filterHeight, filterWidth}
"""
def
col2img
(
attrs
,
col
,
img
):
input_channels
=
im
.
shape
.
dims
[
0
]
input_height
=
im
.
shape
.
dims
[
1
]
input_width
=
im
.
shape
.
dims
[
2
]
filter_height
=
col
.
shape
.
dims
[
3
]
filter_width
=
col
.
shape
.
dims
[
4
]
output_height
=
col
.
shape
.
dims
[
0
]
output_width
=
col
.
shape
.
dims
[
1
]
for
col_row_idx
in
range
(
0
,
output_height
):
for
col_col_idx
in
range
(
0
,
output_width
):
input_channels
=
im
.
shape
[
0
]
inputHeight
=
im
.
shape
[
1
]
inputWidth
=
im
.
shape
[
2
]
outputHeight
=
col
.
shape
[
0
]
outputWidth
=
col
.
shape
[
1
]
filterHeight
=
col
.
shape
[
3
]
filterWidth
=
col
.
shape
[
4
]
strideHeight
=
attrs
[
'strideHeight'
]
strideWidth
=
attrs
[
'strideWidth'
]
paddingHeight
=
attrs
[
'paddingHeight'
]
paddingWidth
=
attrs
[
'paddingWidth'
]
for
col_row_idx
in
range
(
0
,
outputHeight
):
for
col_col_idx
in
range
(
0
,
outputWidth
):
for
channel
in
range
(
0
,
input_channels
):
for
filter_row_idx
in
range
(
0
,
filter
_h
eight
):
for
filter_col_idx
in
range
(
0
,
filter
_w
idth
):
for
filter_row_idx
in
range
(
0
,
filter
H
eight
):
for
filter_col_idx
in
range
(
0
,
filter
W
idth
):
im_row_offset
=
\
col_row_idx
*
stride
_height
+
filter_row_idx
-
padding_h
eight
col_row_idx
*
stride
Height
+
filter_row_idx
-
paddingH
eight
im_col_offset
=
\
col_col_idx
*
stride
_width
+
filter_col_idx
-
padding_w
idth
col_col_idx
*
stride
Width
+
filter_col_idx
-
paddingW
idth
if
(
im_row_offset
>=
0
and
im_row_offset
<
input
_h
eight
and
im_row_offset
<
input
H
eight
and
im_col_offset
>=
0
and
im_col_offset
<
input
_w
idth
):
im_col_offset
<
input
W
idth
):
im
[
channel
][
im_row_offset
][
im_col_offset
]
=
\
col
[
col_row_idx
][
col_col_idx
][
channel
][
filter_row_idx
][
filter_col_idx
]
class
TestBlockExpandMulOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"block_expand"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
9
,
9
]).
astype
(
"float64"
),
}
self
.
attrs
=
{
'block_height'
:
3
,
'block_width'
:
3
,
'stride_height'
:
2
,
'stride_width'
:
2
,
'padding_height'
:
3
,
'padding_width'
:
3
,
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
9
,
9
]).
astype
(
"float32"
)
attrs
=
{
'blockHeight'
:
3
,
'blockWidth'
:
3
,
'strideHeight'
:
2
,
'strideWidth'
:
2
,
'paddingHeight'
:
3
,
'paddingWidth'
:
3
,
}
self
.
outputs
=
{
'Out'
:
np
.
multiply
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
outputHeight
,
outputWidth
=
get_output_shape
(
attrs
,
x
)
out
=
np
.
random
.
uniform
(
0.1
,
1
,
\
[
outputHeight
,
outputWidth
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
]]).
astype
(
"float32"
)
self
.
op_type
=
"block_expand"
self
.
inputs
=
{
'X'
:
x
.
reshape
(
1
,
3
,
9
,
9
)}
self
.
attrs
=
attrs
im2col
(
attrs
,
x
,
out
)
self
.
outputs
=
{
'Out'
:
out
.
reshape
(
1
,
outputHeight
,
outputWidth
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
])
}
#print out
def
test_check_output
(
self
):
self
.
check_output
()
print
1
"""
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')
"""
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录