Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
32d533c2
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
32d533c2
编写于
12月 28, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cache obj_mask and gt_match_mask. test=develop
上级
6c5a5d07
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
76 addition
and
82 deletion
+76
-82
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+23
-0
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+32
-78
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+8
-1
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+13
-3
未找到文件。
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
32d533c2
...
@@ -29,6 +29,11 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
...
@@ -29,6 +29,11 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
"Input(GTLabel) of Yolov3LossOp should not be null."
);
"Input(GTLabel) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Loss"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Loss"
),
"Output(Loss) of Yolov3LossOp should not be null."
);
"Output(Loss) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ObjectnessMask"
),
"Output(ObjectnessMask) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"GTMatchMask"
),
"Output(GTMatchMask) of Yolov3LossOp should not be null."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_gtbox
=
ctx
->
GetInputDim
(
"GTBox"
);
auto
dim_gtbox
=
ctx
->
GetInputDim
(
"GTBox"
);
...
@@ -68,6 +73,12 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
...
@@ -68,6 +73,12 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
]});
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
]});
ctx
->
SetOutputDim
(
"Loss"
,
framework
::
make_ddim
(
dim_out
));
ctx
->
SetOutputDim
(
"Loss"
,
framework
::
make_ddim
(
dim_out
));
std
::
vector
<
int64_t
>
dim_obj_mask
({
dim_x
[
0
],
mask_num
,
dim_x
[
2
],
dim_x
[
3
]});
ctx
->
SetOutputDim
(
"ObjectnessMask"
,
framework
::
make_ddim
(
dim_obj_mask
));
std
::
vector
<
int64_t
>
dim_gt_match_mask
({
dim_gtbox
[
0
],
dim_gtbox
[
1
]});
ctx
->
SetOutputDim
(
"GTMatchMask"
,
framework
::
make_ddim
(
dim_gt_match_mask
));
}
}
protected:
protected:
...
@@ -103,6 +114,16 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -103,6 +114,16 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Loss"
,
AddOutput
(
"Loss"
,
"The output yolov3 loss tensor, "
"The output yolov3 loss tensor, "
"This is a 1-D tensor with shape of [N]"
);
"This is a 1-D tensor with shape of [N]"
);
AddOutput
(
"ObjectnessMask"
,
"This is an intermediate tensor with shape of [N, M, H, W], "
"M is the number of anchor masks. This parameter caches the "
"mask for calculate objectness loss in gradient kernel."
)
.
AsIntermediate
();
AddOutput
(
"GTMatchMask"
,
"This is an intermediate tensor with shape if [N, B], "
"B is the max box number of GT boxes. This parameter caches "
"matched mask index of each GT boxes for gradient calculate."
)
.
AsIntermediate
();
AddAttr
<
int
>
(
"class_num"
,
"The number of classes to predict."
);
AddAttr
<
int
>
(
"class_num"
,
"The number of classes to predict."
);
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
...
@@ -208,6 +229,8 @@ class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
...
@@ -208,6 +229,8 @@ class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
op
->
SetInput
(
"GTBox"
,
Input
(
"GTBox"
));
op
->
SetInput
(
"GTBox"
,
Input
(
"GTBox"
));
op
->
SetInput
(
"GTLabel"
,
Input
(
"GTLabel"
));
op
->
SetInput
(
"GTLabel"
,
Input
(
"GTLabel"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
OutputGrad
(
"Loss"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
OutputGrad
(
"Loss"
));
op
->
SetInput
(
"ObjectnessMask"
,
Output
(
"ObjectnessMask"
));
op
->
SetInput
(
"GTMatchMask"
,
Output
(
"GTMatchMask"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetAttrMap
(
Attrs
());
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
32d533c2
...
@@ -227,6 +227,8 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -227,6 +227,8 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
*
objness_mask
=
ctx
.
Output
<
Tensor
>
(
"ObjectnessMask"
);
auto
*
gt_match_mask
=
ctx
.
Output
<
Tensor
>
(
"GTMatchMask"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
...
@@ -241,19 +243,19 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -241,19 +243,19 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
const
int
b
=
gt_box
->
dims
()[
1
];
const
int
b
=
gt_box
->
dims
()[
1
];
int
input_size
=
downsample
*
h
;
int
input_size
=
downsample
*
h
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
T
*
loss_data
=
loss
->
mutable_data
<
T
>
({
n
},
ctx
.
GetPlace
());
T
*
loss_data
=
loss
->
mutable_data
<
T
>
({
n
},
ctx
.
GetPlace
());
memset
(
loss_data
,
0
,
loss
->
numel
()
*
sizeof
(
T
));
memset
(
loss_data
,
0
,
loss
->
numel
()
*
sizeof
(
T
));
int
*
obj_mask_data
=
Tensor
objness
;
objness_mask
->
mutable_data
<
int
>
({
n
,
mask_num
,
h
,
w
},
ctx
.
GetPlace
());
int
*
objness_data
=
memset
(
obj_mask_data
,
0
,
objness_mask
->
numel
()
*
sizeof
(
int
));
objness
.
mutable_data
<
int
>
({
n
,
mask_num
,
h
,
w
},
ctx
.
GetPlace
());
int
*
gt_match_mask_data
=
memset
(
objness_data
,
0
,
objness
.
numel
()
*
sizeof
(
int
));
gt_match_mask
->
mutable_data
<
int
>
({
n
,
b
},
ctx
.
GetPlace
());
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
mask_num
;
j
++
)
{
for
(
int
j
=
0
;
j
<
mask_num
;
j
++
)
{
...
@@ -277,7 +279,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -277,7 +279,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
if
(
best_iou
>
ignore_thresh
)
{
if
(
best_iou
>
ignore_thresh
)
{
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
obj
ness
_data
[
obj_idx
]
=
-
1
;
obj
_mask
_data
[
obj_idx
]
=
-
1
;
}
}
}
}
}
}
...
@@ -285,6 +287,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -285,6 +287,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
if
(
LessEqualZero
<
T
>
(
gt
.
w
)
||
LessEqualZero
<
T
>
(
gt
.
h
))
{
if
(
LessEqualZero
<
T
>
(
gt
.
w
)
||
LessEqualZero
<
T
>
(
gt
.
h
))
{
gt_match_mask_data
[
i
*
b
+
t
]
=
-
1
;
continue
;
continue
;
}
}
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
...
@@ -309,6 +312,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -309,6 +312,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
}
}
int
mask_idx
=
GetMaskIndex
(
anchor_mask
,
best_n
);
int
mask_idx
=
GetMaskIndex
(
anchor_mask
,
best_n
);
gt_match_mask_data
[
i
*
b
+
t
]
=
mask_idx
;
if
(
mask_idx
>=
0
)
{
if
(
mask_idx
>=
0
)
{
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
an_stride
,
stride
,
0
);
...
@@ -316,7 +320,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -316,7 +320,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
obj
ness
_data
[
obj_idx
]
=
1
;
obj
_mask
_data
[
obj_idx
]
=
1
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
...
@@ -327,7 +331,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -327,7 +331,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
}
}
}
}
CalcObjnessLoss
<
T
>
(
loss_data
,
input_data
+
4
*
stride
,
obj
ness
_data
,
n
,
CalcObjnessLoss
<
T
>
(
loss_data
,
input_data
+
4
*
stride
,
obj
_mask
_data
,
n
,
mask_num
,
h
,
w
,
stride
,
an_stride
);
mask_num
,
h
,
w
,
stride
,
an_stride
);
}
}
};
};
...
@@ -341,64 +345,35 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
...
@@ -341,64 +345,35 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
objness_mask
=
ctx
.
Input
<
Tensor
>
(
"ObjectnessMask"
);
auto
*
gt_match_mask
=
ctx
.
Input
<
Tensor
>
(
"GTMatchMask"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
int
downsample
=
ctx
.
Attr
<
int
>
(
"downsample"
);
int
downsample
=
ctx
.
Attr
<
int
>
(
"downsample"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
n
=
input_grad
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
c
=
input_grad
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
h
=
input_grad
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
w
=
input_grad
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
mask_num
=
anchor_mask
.
size
();
const
int
mask_num
=
anchor_mask
.
size
();
const
int
b
=
gt_
box
->
dims
()[
1
];
const
int
b
=
gt_
match_mask
->
dims
()[
1
];
int
input_size
=
downsample
*
h
;
int
input_size
=
downsample
*
h
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
const
T
*
loss_grad_data
=
loss_grad
->
data
<
T
>
();
const
T
*
loss_grad_data
=
loss_grad
->
data
<
T
>
();
const
int
*
obj_mask_data
=
objness_mask
->
data
<
int
>
();
const
int
*
gt_match_mask_data
=
gt_match_mask
->
data
<
int
>
();
T
*
input_grad_data
=
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
memset
(
input_grad_data
,
0
,
input_grad
->
numel
()
*
sizeof
(
T
));
memset
(
input_grad_data
,
0
,
input_grad
->
numel
()
*
sizeof
(
T
));
Tensor
objness
;
int
*
objness_data
=
objness
.
mutable_data
<
int
>
({
n
,
mask_num
,
h
,
w
},
ctx
.
GetPlace
());
memset
(
objness_data
,
0
,
objness
.
numel
()
*
sizeof
(
int
));
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
mask_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
mask_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
GetYoloBox
(
input_data
,
anchors
,
l
,
k
,
anchor_mask
[
j
],
h
,
input_size
,
box_idx
,
stride
);
T
best_iou
=
0
;
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
if
(
LessEqualZero
<
T
>
(
gt
.
w
)
||
LessEqualZero
<
T
>
(
gt
.
h
))
{
continue
;
}
T
iou
=
CalcBoxIoU
(
pred
,
gt
);
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
}
}
if
(
best_iou
>
ignore_thresh
)
{
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
objness_data
[
obj_idx
]
=
-
1
;
}
}
}
}
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
if
(
LessEqualZero
<
T
>
(
gt
.
w
)
||
LessEqualZero
<
T
>
(
gt
.
h
))
{
if
(
LessEqualZero
<
T
>
(
gt
.
w
)
||
LessEqualZero
<
T
>
(
gt
.
h
))
{
...
@@ -406,35 +381,14 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
...
@@ -406,35 +381,14 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
}
}
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
Box
<
T
>
gt_shift
=
gt
;
gt_shift
.
x
=
0.0
;
gt_shift
.
y
=
0.0
;
T
best_iou
=
0.0
;
int
best_n
=
0
;
for
(
int
an_idx
=
0
;
an_idx
<
an_num
;
an_idx
++
)
{
Box
<
T
>
an_box
;
an_box
.
x
=
0.0
;
an_box
.
y
=
0.0
;
an_box
.
w
=
anchors
[
2
*
an_idx
]
/
static_cast
<
T
>
(
input_size
);
an_box
.
h
=
anchors
[
2
*
an_idx
+
1
]
/
static_cast
<
T
>
(
input_size
);
float
iou
=
CalcBoxIoU
<
T
>
(
an_box
,
gt_shift
);
// TO DO: iou > 0.5 ?
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
best_n
=
an_idx
;
}
}
int
mask_idx
=
GetMaskIndex
(
anchor_mask
,
best_n
)
;
int
mask_idx
=
gt_match_mask_data
[
i
*
b
+
t
]
;
if
(
mask_idx
>=
0
)
{
if
(
mask_idx
>=
0
)
{
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
an_stride
,
stride
,
0
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
CalcBoxLocationLossGrad
<
T
>
(
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
gi
,
gj
,
h
,
input_size
,
stride
);
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
objness_data
[
obj_idx
]
=
1
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
...
@@ -446,7 +400,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
...
@@ -446,7 +400,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
}
}
CalcObjnessLossGrad
<
T
>
(
input_grad_data
+
4
*
stride
,
loss_grad_data
,
CalcObjnessLossGrad
<
T
>
(
input_grad_data
+
4
*
stride
,
loss_grad_data
,
input_data
+
4
*
stride
,
obj
ness
_data
,
n
,
mask_num
,
input_data
+
4
*
stride
,
obj
_mask
_data
,
n
,
mask_num
,
h
,
w
,
stride
,
an_stride
);
h
,
w
,
stride
,
an_stride
);
}
}
};
};
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
32d533c2
...
@@ -483,6 +483,9 @@ def yolov3_loss(x,
...
@@ -483,6 +483,9 @@ def yolov3_loss(x,
loss
=
helper
.
create_variable
(
loss
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
objectness_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
gt_match_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
attrs
=
{
attrs
=
{
"anchors"
:
anchors
,
"anchors"
:
anchors
,
"anchor_mask"
:
anchor_mask
,
"anchor_mask"
:
anchor_mask
,
...
@@ -496,7 +499,11 @@ def yolov3_loss(x,
...
@@ -496,7 +499,11 @@ def yolov3_loss(x,
inputs
=
{
"X"
:
x
,
inputs
=
{
"X"
:
x
,
"GTBox"
:
gtbox
,
"GTBox"
:
gtbox
,
"GTLabel"
:
gtlabel
},
"GTLabel"
:
gtlabel
},
outputs
=
{
'Loss'
:
loss
},
outputs
=
{
'Loss'
:
loss
,
'ObjectnessMask'
:
objectness_mask
,
'GTMatchMask'
:
gt_match_mask
},
attrs
=
attrs
)
attrs
=
attrs
)
return
loss
return
loss
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
32d533c2
...
@@ -116,13 +116,17 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
...
@@ -116,13 +116,17 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
anchor_boxes
=
np
.
tile
(
anchor_boxes
[
np
.
newaxis
,
:,
:],
(
n
,
1
,
1
))
anchor_boxes
=
np
.
tile
(
anchor_boxes
[
np
.
newaxis
,
:,
:],
(
n
,
1
,
1
))
ious
=
batch_xywh_box_iou
(
gtbox_shift
,
anchor_boxes
)
ious
=
batch_xywh_box_iou
(
gtbox_shift
,
anchor_boxes
)
iou_matches
=
np
.
argmax
(
ious
,
axis
=-
1
)
iou_matches
=
np
.
argmax
(
ious
,
axis
=-
1
)
gt_matches
=
iou_matches
.
copy
()
for
i
in
range
(
n
):
for
i
in
range
(
n
):
for
j
in
range
(
b
):
for
j
in
range
(
b
):
if
gtbox
[
i
,
j
,
2
:].
sum
()
==
0
:
if
gtbox
[
i
,
j
,
2
:].
sum
()
==
0
:
gt_matches
[
i
,
j
]
=
-
1
continue
continue
if
iou_matches
[
i
,
j
]
not
in
anchor_mask
:
if
iou_matches
[
i
,
j
]
not
in
anchor_mask
:
gt_matches
[
i
,
j
]
=
-
1
continue
continue
an_idx
=
anchor_mask
.
index
(
iou_matches
[
i
,
j
])
an_idx
=
anchor_mask
.
index
(
iou_matches
[
i
,
j
])
gt_matches
[
i
,
j
]
=
an_idx
gi
=
int
(
gtbox
[
i
,
j
,
0
]
*
w
)
gi
=
int
(
gtbox
[
i
,
j
,
0
]
*
w
)
gj
=
int
(
gtbox
[
i
,
j
,
1
]
*
h
)
gj
=
int
(
gtbox
[
i
,
j
,
1
]
*
h
)
...
@@ -146,7 +150,8 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
...
@@ -146,7 +150,8 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
if
objness
[
i
,
j
]
>=
0
:
if
objness
[
i
,
j
]
>=
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
objness
[
i
,
j
])
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
objness
[
i
,
j
])
return
loss
return
(
loss
,
objness
.
reshape
((
n
,
mask_num
,
h
,
w
)).
astype
(
'int32'
),
\
gt_matches
.
astype
(
'int32'
))
class
TestYolov3LossOp
(
OpTest
):
class
TestYolov3LossOp
(
OpTest
):
...
@@ -173,11 +178,16 @@ class TestYolov3LossOp(OpTest):
...
@@ -173,11 +178,16 @@ class TestYolov3LossOp(OpTest):
'GTBox'
:
gtbox
.
astype
(
'float32'
),
'GTBox'
:
gtbox
.
astype
(
'float32'
),
'GTLabel'
:
gtlabel
.
astype
(
'int32'
)
'GTLabel'
:
gtlabel
.
astype
(
'int32'
)
}
}
self
.
outputs
=
{
'Loss'
:
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)}
loss
,
objness
,
gt_matches
=
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)
self
.
outputs
=
{
'Loss'
:
loss
,
'ObjectnessMask'
:
objness
,
"GTMatchMask"
:
gt_matches
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
place
=
core
.
CPUPlace
()
place
=
core
.
CPUPlace
()
self
.
check_output_with_place
(
place
,
atol
=
1
e-3
)
self
.
check_output_with_place
(
place
,
atol
=
2
e-3
)
def
test_check_grad_ignore_gtbox
(
self
):
def
test_check_grad_ignore_gtbox
(
self
):
place
=
core
.
CPUPlace
()
place
=
core
.
CPUPlace
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录