提交 31bae860 编写于 作者: T Travis CI

Deploy to GitHub Pages: 98bc889c

上级 88a05808
此差异已折叠。
...@@ -257,13 +257,14 @@ default Bias.</li> ...@@ -257,13 +257,14 @@ default Bias.</li>
<h2>conv_operator<a class="headerlink" href="#conv-operator" title="Permalink to this headline"></a></h2> <h2>conv_operator<a class="headerlink" href="#conv-operator" title="Permalink to this headline"></a></h2>
<dl class="function"> <dl class="function">
<dt> <dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">conv_operator</code><span class="sig-paren">(</span><em>input</em>, <em>filter_size</em>, <em>num_filters</em>, <em>num_channel=None</em>, <em>stride=1</em>, <em>padding=0</em>, <em>groups=1</em>, <em>filter_size_y=None</em>, <em>stride_y=None</em>, <em>padding_y=None</em><span class="sig-paren">)</span></dt> <code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">conv_operator</code><span class="sig-paren">(</span><em>img</em>, <em>filter</em>, <em>filter_size</em>, <em>num_filters</em>, <em>num_channel=None</em>, <em>stride=1</em>, <em>padding=0</em>, <em>groups=1</em>, <em>filter_size_y=None</em>, <em>stride_y=None</em>, <em>padding_y=None</em><span class="sig-paren">)</span></dt>
<dd><p>Different from img_conv_layer, conv_op is an Operator, which can be used <dd><p>Different from img_conv_layer, conv_op is an Operator, which can be used
in mixed_layer. And conv_op takes two inputs to perform convolution. in mixed_layer. And conv_op takes two inputs to perform convolution.
The first input is the image and the second is filter kernel. It only The first input is the image and the second is filter kernel. It only
support GPU mode.</p> support GPU mode.</p>
<p>The example usage is:</p> <p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">op</span> <span class="o">=</span> <span class="n">conv_operator</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">],</span> <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">op</span> <span class="o">=</span> <span class="n">conv_operator</span><span class="p">(</span><span class="n">img</span><span class="o">=</span><span class="n">input1</span><span class="p">,</span>
<span class="nb">filter</span><span class="o">=</span><span class="n">input2</span><span class="p">,</span>
<span class="n">filter_size</span><span class="o">=</span><span class="mf">3.0</span><span class="p">,</span> <span class="n">filter_size</span><span class="o">=</span><span class="mf">3.0</span><span class="p">,</span>
<span class="n">num_filters</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span> <span class="n">num_filters</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">num_channels</span><span class="o">=</span><span class="mi">64</span><span class="p">)</span> <span class="n">num_channels</span><span class="o">=</span><span class="mi">64</span><span class="p">)</span>
...@@ -274,7 +275,8 @@ support GPU mode.</p> ...@@ -274,7 +275,8 @@ support GPU mode.</p>
<col class="field-body" /> <col class="field-body" />
<tbody valign="top"> <tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>LayerOutput|list|tuple</em>) &#8211; Input layer.</li> <li><strong>img</strong> (<em>LayerOutput</em>) &#8211; input image</li>
<li><strong>filter</strong> (<em>LayerOutput</em>) &#8211; input filter</li>
<li><strong>filter_size</strong> (<em>int</em>) &#8211; The x dimension of a filter kernel.</li> <li><strong>filter_size</strong> (<em>int</em>) &#8211; The x dimension of a filter kernel.</li>
<li><strong>filter_size_y</strong> (<em>int</em>) &#8211; The y dimension of a filter kernel. Since <li><strong>filter_size_y</strong> (<em>int</em>) &#8211; The y dimension of a filter kernel. Since
PaddlePaddle now supports rectangular filters, PaddlePaddle now supports rectangular filters,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册