Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2d707e32
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2d707e32
编写于
8月 30, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the comments.
上级
e967645c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
18 addition
and
18 deletion
+18
-18
paddle/operators/math/im2col.h
paddle/operators/math/im2col.h
+18
-18
未找到文件。
paddle/operators/math/im2col.h
浏览文件 @
2d707e32
...
...
@@ -29,40 +29,40 @@ enum ColFormat { kCFO = 0, kOCF = 1 };
*
* \param imData Image data.
* \param imShape The shape of imData,
* [input
Channels, inputHeight, inputW
idth].
* [input
_channels, input_height, input_w
idth].
* \param colData Column data.
* \param colShape The shape of colData.
*
* If the template argument Format is kCFO, the shape of colData is:
* [input
Channels, filterHeight, filterWidth, outputHeight, outputW
idth]
* [input
_channels, filter_height, filter_width, output_height, output_w
idth]
* So, it is easy to reshape into a convolution matrix for convolution
* calculation based on matrix multiplication.
* The shape of convolution matrix is [height, width], where the height is equal
* input
Channels * filterHeight * filterW
idth, and the width is equal
* output
Height * outputW
idth.
* input
_channels * filter_height * filter_w
idth, and the width is equal
* output
_height * output_w
idth.
*
* Reshape:
* shape of colData shape of convolution matrix
* [input
C
hannels,
* filter
H
eight,
* filter
W
idth, ======> [height, width]
* output
H
eight,
* output
W
idth]
* [input
_c
hannels,
* filter
_h
eight,
* filter
_w
idth, ======> [height, width]
* output
_h
eight,
* output
_w
idth]
*
* If the template argument Format is kOCF, the shape of colData is:
* [output
Height, outputWidth, inputChannels, filterHeight, filterW
idth]
* [output
_height, output_width, input_channels, filter_height, filter_w
idth]
* So, it is easy to reshape into a sequence matrix for rnn calculation.
* The shape of sequence matrix is [seq
Length, stepSize], where the seqL
ength
* is equal output
Height * outputWidth, and the stepS
ize is equal
* input
Channels * filterHeight * filterW
idth.
* The shape of sequence matrix is [seq
_length, step_size], where the seq_l
ength
* is equal output
_height * output_width, and the step_s
ize is equal
* input
_channels * filter_height * filter_w
idth.
*
* Reshape:
* shape of colData shape of sequence matrix
* [output
H
eight,
* output
W
idth,
* input
C
hannels, ======> [seqLength, stepSize]
* filter
H
eight,
* filter
W
idth]
* [output
_h
eight,
* output
_w
idth,
* input
_c
hannels, ======> [seqLength, stepSize]
* filter
_h
eight,
* filter
_w
idth]
*
* \note The caller needs to ensure that imShape.inputChannels is equal to
* colShape.inputChannels.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录