Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
2a438b0a
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2a438b0a
编写于
1月 03, 2023
作者:
X
xiaoting
提交者:
GitHub
1月 03, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry pick] fix fold for big bs (#49491)
* fix fold for large bs * fix fold for large bs * fix pre-commit
上级
d7855fe8
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
108 addition
and
60 deletion
+108
-60
paddle/phi/kernels/impl/fold_grad_kernel_impl.h
paddle/phi/kernels/impl/fold_grad_kernel_impl.h
+2
-5
paddle/phi/kernels/impl/fold_kernel_impl.h
paddle/phi/kernels/impl/fold_kernel_impl.h
+3
-5
python/paddle/fluid/tests/unittests/test_fold_op.py
python/paddle/fluid/tests/unittests/test_fold_op.py
+103
-50
未找到文件。
paddle/phi/kernels/impl/fold_grad_kernel_impl.h
浏览文件 @
2a438b0a
...
...
@@ -54,11 +54,8 @@ void FoldGradKernel(const Context& ctx,
DDim
out_shape
=
make_ddim
({
n_output_plane
,
output_sizes
[
0
],
output_sizes
[
1
]});
DDim
input_matrix_shape
=
make_ddim
({
x_dims
[
0
],
kernel_sizes
[
0
],
kernel_sizes
[
1
],
output_height
,
output_width
});
DDim
input_matrix_shape
=
make_ddim
(
{
1
,
kernel_sizes
[
0
],
kernel_sizes
[
1
],
output_height
,
output_width
});
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
Context
,
T
>
...
...
paddle/phi/kernels/impl/fold_kernel_impl.h
浏览文件 @
2a438b0a
...
...
@@ -56,11 +56,8 @@ void FoldKernel(const Context& ctx,
DDim
output_shape
=
make_ddim
({
n_output_plane
,
output_sizes
[
0
],
output_sizes
[
1
]});
DDim
input_matrix_shape
=
make_ddim
({
x_dims
[
0
],
kernel_sizes
[
0
],
kernel_sizes
[
1
],
output_height
,
output_width
});
DDim
input_matrix_shape
=
make_ddim
(
{
1
,
kernel_sizes
[
0
],
kernel_sizes
[
1
],
output_height
,
output_width
});
phi
::
funcs
::
SetConstant
<
Context
,
T
>
set_zero
;
set_zero
(
ctx
,
out
,
static_cast
<
T
>
(
0
));
...
...
@@ -68,6 +65,7 @@ void FoldKernel(const Context& ctx,
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
DenseTensor
out_batch
=
out
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// im size=3
DenseTensor
in_batch
=
x
.
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// col size=5
col2im
(
ctx
,
in_batch
,
dilations
,
strides
,
paddings
,
&
out_batch
);
...
...
python/paddle/fluid/tests/unittests/test_fold_op.py
浏览文件 @
2a438b0a
...
...
@@ -14,6 +14,7 @@
from
__future__
import
print_function
import
math
import
numpy
as
np
import
unittest
...
...
@@ -45,34 +46,64 @@ class TestFoldOp(OpTest):
def
calc_fold
(
self
):
output_shape
=
[
0
]
*
4
output_shape
[
0
]
=
self
.
batch_size
output_shape
[
1
]
=
int
(
self
.
input_channels
/
(
self
.
kernel_sizes
[
0
]
*
self
.
kernel_sizes
[
1
]))
output_shape
[
1
]
=
int
(
self
.
input_channels
/
(
self
.
kernel_sizes
[
0
]
*
self
.
kernel_sizes
[
1
])
)
output_shape
[
2
]
=
self
.
output_sizes
[
0
]
output_shape
[
3
]
=
self
.
output_sizes
[
1
]
dkernel_h
=
self
.
dilations
[
0
]
*
(
self
.
kernel_sizes
[
0
]
-
1
)
+
1
dkernel_w
=
self
.
dilations
[
1
]
*
(
self
.
kernel_sizes
[
1
]
-
1
)
+
1
col_height
=
int
((
self
.
output_sizes
[
0
]
+
self
.
paddings
[
0
]
+
self
.
paddings
[
2
]
-
dkernel_h
)
/
self
.
strides
[
0
])
+
1
col_width
=
int
((
self
.
output_sizes
[
1
]
+
self
.
paddings
[
1
]
+
self
.
paddings
[
3
]
-
dkernel_w
)
/
self
.
strides
[
1
])
+
1
col_height
=
(
int
(
(
self
.
output_sizes
[
0
]
+
self
.
paddings
[
0
]
+
self
.
paddings
[
2
]
-
dkernel_h
)
/
self
.
strides
[
0
]
)
+
1
)
col_width
=
(
int
(
(
self
.
output_sizes
[
1
]
+
self
.
paddings
[
1
]
+
self
.
paddings
[
3
]
-
dkernel_w
)
/
self
.
strides
[
1
]
)
+
1
)
output
=
np
.
zeros
(
output_shape
).
astype
(
np
.
float64
)
############ calculate output ##############
for
b
in
range
(
output_shape
[
0
]):
for
c
in
range
(
self
.
input_channels
):
w_offset
=
int
(
c
%
self
.
kernel_sizes
[
1
])
h_offset
=
int
(
(
c
/
self
.
kernel_sizes
[
1
])
%
self
.
kernel_sizes
[
0
])
(
c
/
self
.
kernel_sizes
[
1
])
%
self
.
kernel_sizes
[
0
]
)
c_out
=
int
(
c
/
self
.
kernel_sizes
[
0
]
/
self
.
kernel_sizes
[
1
])
for
h
in
range
(
col_height
):
h_out
=
int
(
h
*
self
.
strides
[
0
]
-
self
.
paddings
[
0
]
+
h_offset
*
self
.
dilations
[
0
])
h_out
=
int
(
h
*
self
.
strides
[
0
]
-
self
.
paddings
[
0
]
+
h_offset
*
self
.
dilations
[
0
]
)
for
w
in
range
(
col_width
):
w_out
=
int
(
w
*
self
.
strides
[
1
]
-
self
.
paddings
[
1
]
+
w_offset
*
self
.
dilations
[
1
])
w_out
=
int
(
w
*
self
.
strides
[
1
]
-
self
.
paddings
[
1
]
+
w_offset
*
self
.
dilations
[
1
]
)
if
(
h_out
>=
0
and
h_out
<
self
.
output_sizes
[
0
])
and
(
w_out
>=
0
and
w_out
<
self
.
output_sizes
[
1
]):
output
[
b
,
c_out
,
h_out
,
w_out
]
+=
self
.
x
[
b
,
c
,
w
+
col_width
*
h
]
w_out
>=
0
and
w_out
<
self
.
output_sizes
[
1
]
):
output
[
b
,
c_out
,
h_out
,
w_out
]
+=
self
.
x
[
b
,
c
,
w
+
col_width
*
h
]
self
.
outputs
=
output
...
...
@@ -85,7 +116,7 @@ class TestFoldOp(OpTest):
'paddings'
:
self
.
paddings
,
'dilations'
:
self
.
dilations
,
'strides'
:
self
.
strides
,
'output_sizes'
:
self
.
output_sizes
'output_sizes'
:
self
.
output_sizes
,
}
self
.
outputs
=
{
'Y'
:
self
.
outputs
}
...
...
@@ -101,9 +132,23 @@ class TestFoldOp(OpTest):
self
.
check_grad
([
'X'
],
'Y'
,
check_eager
=
True
)
class
TestFoldshape
(
TestFoldOp
):
def
init_data
(
self
):
self
.
batch_size
=
8
self
.
input_channels
=
3
*
3
*
3
self
.
length
=
6
self
.
kernel_sizes
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
0
,
0
,
0
,
0
]
self
.
dilations
=
[
1
,
1
]
self
.
output_sizes
=
[
4
,
5
]
input_shape
=
[
self
.
batch_size
,
self
.
input_channels
,
self
.
length
]
self
.
x
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
np
.
float64
)
class
TestFoldAPI
(
TestFoldOp
):
#This is for test on paddle.nn.Fold
#
This is for test on paddle.nn.Fold
def
setUp
(
self
):
self
.
op_type
=
'fold'
...
...
@@ -120,19 +165,19 @@ class TestFoldAPI(TestFoldOp):
m
=
paddle
.
nn
.
Fold
(
**
self
.
attrs
)
m
.
eval
()
result
=
m
(
input
)
np
.
testing
.
assert_allclose
(
result
.
numpy
(),
self
.
outputs
[
'Y'
],
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
result
.
numpy
(),
self
.
outputs
[
'Y'
],
rtol
=
1e-05
)
def
test_info
(
self
):
str
(
paddle
.
nn
.
Fold
(
**
self
.
attrs
))
class
TestFoldOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
from
paddle.nn.functional
import
fold
from
paddle.fluid.framework
import
Program
,
program_guard
with
program_guard
(
Program
(),
Program
()):
def
test_input_shape
():
...
...
@@ -148,59 +193,67 @@ class TestFoldOpError(unittest.TestCase):
def
test_padding_shape
():
# padding_size must be 2 or 4
x
=
paddle
.
randn
(
shape
=
[
2
,
6
,
6
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
paddings
=
[
2
,
2
,
3
])
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
paddings
=
[
2
,
2
,
3
],
)
def
test_dilations_shape
():
# dialtions_size must be 2
x
=
paddle
.
randn
(
shape
=
[
2
,
6
,
6
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
dilations
=
[
2
,
2
,
3
])
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
dilations
=
[
2
,
2
,
3
],
)
def
test_strides_shape
():
# strids_size must be 2
x
=
paddle
.
randn
(
shape
=
[
2
,
6
,
6
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
2
,
2
,
3
])
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
2
,
2
,
3
],
)
def
test_output_size
():
# im_h * im_w must be L
x
=
paddle
.
randn
(
shape
=
[
2
,
6
,
6
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
6
,
6
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
1
,
1
])
out
=
fold
(
x
,
output_sizes
=
[
6
,
6
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
1
,
1
]
)
def
test_output_size_2
():
# out_size must GT 1
x
=
paddle
.
randn
(
shape
=
[
2
,
6
,
6
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
0.1
,
0.2
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
1
,
1
])
out
=
fold
(
x
,
output_sizes
=
[
0.1
,
0.2
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
1
,
1
],
)
def
test_block_h_w
():
# test_block_h_w GT 0
x
=
paddle
.
randn
(
shape
=
[
2
,
1
,
1
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
1
,
1
],
kernel_sizes
=
[
2
,
2
],
strides
=
1
)
out
=
fold
(
x
,
output_sizes
=
[
1
,
1
],
kernel_sizes
=
[
2
,
2
],
strides
=
1
)
def
test_GT_0
():
x
=
paddle
.
randn
(
shape
=
[
2
,
1
,
1
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
0
,
0
],
kernel_sizes
=
[
0
,
0
],
dilations
=
0
,
paddings
=
[
0
,
0
],
strides
=
0
)
out
=
fold
(
x
,
output_sizes
=
[
0
,
0
],
kernel_sizes
=
[
0
,
0
],
dilations
=
0
,
paddings
=
[
0
,
0
],
strides
=
0
,
)
self
.
assertRaises
(
AssertionError
,
test_input_shape
)
self
.
assertRaises
(
AssertionError
,
test_kernel_shape
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录