未验证 提交 29d9dbe3 编写于 作者: 姜永久 提交者: GitHub

rm unittests eager guard tests part17 number2pool1d (#48840)

上级 f2c59b88
...@@ -20,7 +20,6 @@ import op_test ...@@ -20,7 +20,6 @@ import op_test
import paddle import paddle
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.distributed.models.moe import utils from paddle.distributed.models.moe import utils
from paddle.fluid.framework import _test_eager_guard
def count(x, upper_num): def count(x, upper_num):
...@@ -68,17 +67,12 @@ class TestNumberCountAPI(unittest.TestCase): ...@@ -68,17 +67,12 @@ class TestNumberCountAPI(unittest.TestCase):
res = exe.run(feed={'x': self.x}, fetch_list=[out]) res = exe.run(feed={'x': self.x}, fetch_list=[out])
assert np.allclose(res, self.out) assert np.allclose(res, self.out)
def func_api_dygraph(self): def test_api_dygraph(self):
paddle.disable_static() paddle.disable_static()
x = paddle.to_tensor(self.x) x = paddle.to_tensor(self.x)
out = utils._number_count(x, self.upper_num) out = utils._number_count(x, self.upper_num)
assert np.allclose(out.numpy(), self.out) assert np.allclose(out.numpy(), self.out)
def test_api_dygraph(self):
with _test_eager_guard():
self.func_api_dygraph()
self.func_api_dygraph()
if __name__ == '__main__': if __name__ == '__main__':
paddle.enable_static() paddle.enable_static()
......
...@@ -20,7 +20,7 @@ from op_test import OpTest ...@@ -20,7 +20,7 @@ from op_test import OpTest
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.framework import Program, _test_eager_guard, program_guard from paddle.fluid.framework import Program, program_guard
class TestOneHotOp(OpTest): class TestOneHotOp(OpTest):
...@@ -182,10 +182,9 @@ class TestOneHotOpApi(unittest.TestCase): ...@@ -182,10 +182,9 @@ class TestOneHotOpApi(unittest.TestCase):
one_hot_label = paddle.nn.functional.one_hot( one_hot_label = paddle.nn.functional.one_hot(
fluid.dygraph.to_variable(label), depth fluid.dygraph.to_variable(label), depth
) )
with _test_eager_guard(): one_hot_label = paddle.nn.functional.one_hot(
one_hot_label = paddle.nn.functional.one_hot( paddle.to_tensor(label), depth
paddle.to_tensor(label), depth )
)
def _run(self, depth): def _run(self, depth):
label = fluid.layers.data(name="label", shape=[1], dtype="int64") label = fluid.layers.data(name="label", shape=[1], dtype="int64")
......
...@@ -17,7 +17,6 @@ import unittest ...@@ -17,7 +17,6 @@ import unittest
import numpy as np import numpy as np
import paddle import paddle
from paddle.fluid.framework import _test_eager_guard
class LinearNet(paddle.nn.Layer): class LinearNet(paddle.nn.Layer):
...@@ -41,33 +40,23 @@ class Logic(paddle.nn.Layer): ...@@ -41,33 +40,23 @@ class Logic(paddle.nn.Layer):
class TestExportWithTensor(unittest.TestCase): class TestExportWithTensor(unittest.TestCase):
def func_with_tensor(self): def test_with_tensor(self):
self.x_spec = paddle.static.InputSpec( self.x_spec = paddle.static.InputSpec(
shape=[None, 128], dtype='float32' shape=[None, 128], dtype='float32'
) )
model = LinearNet() model = LinearNet()
paddle.onnx.export(model, 'linear_net', input_spec=[self.x_spec]) paddle.onnx.export(model, 'linear_net', input_spec=[self.x_spec])
def test_with_tensor(self):
with _test_eager_guard():
self.func_with_tensor()
self.func_with_tensor()
class TestExportWithTensor1(unittest.TestCase): class TestExportWithTensor1(unittest.TestCase):
def func_with_tensor(self): def test_with_tensor(self):
self.x = paddle.to_tensor(np.random.random((1, 128))) self.x = paddle.to_tensor(np.random.random((1, 128)))
model = LinearNet() model = LinearNet()
paddle.onnx.export(model, 'linear_net', input_spec=[self.x]) paddle.onnx.export(model, 'linear_net', input_spec=[self.x])
def test_with_tensor(self):
with _test_eager_guard():
self.func_with_tensor()
self.func_with_tensor()
class TestExportPrunedGraph(unittest.TestCase): class TestExportPrunedGraph(unittest.TestCase):
def func_prune_graph(self): def test_prune_graph(self):
model = Logic() model = Logic()
self.x = paddle.to_tensor(np.array([1])) self.x = paddle.to_tensor(np.array([1]))
self.y = paddle.to_tensor(np.array([-1])) self.y = paddle.to_tensor(np.array([-1]))
...@@ -77,12 +66,6 @@ class TestExportPrunedGraph(unittest.TestCase): ...@@ -77,12 +66,6 @@ class TestExportPrunedGraph(unittest.TestCase):
model, 'pruned', input_spec=[self.x], output_spec=[out] model, 'pruned', input_spec=[self.x], output_spec=[out]
) )
def test_prune_graph(self):
# test eager
with _test_eager_guard():
self.func_prune_graph()
self.func_prune_graph()
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -27,7 +27,6 @@ import paddle.fluid.optimizer as optimizer ...@@ -27,7 +27,6 @@ import paddle.fluid.optimizer as optimizer
from paddle.fluid.backward import append_backward from paddle.fluid.backward import append_backward
from paddle.fluid.framework import ( from paddle.fluid.framework import (
Program, Program,
_test_eager_guard,
convert_np_dtype_to_dtype_, convert_np_dtype_to_dtype_,
program_guard, program_guard,
) )
...@@ -1387,11 +1386,6 @@ class TestOptimizerDtype(unittest.TestCase): ...@@ -1387,11 +1386,6 @@ class TestOptimizerDtype(unittest.TestCase):
def test_float32(self): def test_float32(self):
self.check_with_dtype('float32') self.check_with_dtype('float32')
def test_api_eager_dygraph(self):
with _test_eager_guard():
self.test_float64()
self.test_float32()
class TestMasterWeightSaveForFP16(unittest.TestCase): class TestMasterWeightSaveForFP16(unittest.TestCase):
''' '''
......
...@@ -18,7 +18,7 @@ import numpy as np ...@@ -18,7 +18,7 @@ import numpy as np
import paddle import paddle
import paddle.optimizer as optimizer import paddle.optimizer as optimizer
from paddle.fluid.framework import _in_legacy_dygraph, _test_eager_guard from paddle.fluid.framework import _in_legacy_dygraph
class TestOptimizerForVarBase(unittest.TestCase): class TestOptimizerForVarBase(unittest.TestCase):
...@@ -59,71 +59,36 @@ class TestOptimizerForVarBase(unittest.TestCase): ...@@ -59,71 +59,36 @@ class TestOptimizerForVarBase(unittest.TestCase):
x.numpy(), np.full([2, 3], -self.lr), rtol=1e-05 x.numpy(), np.full([2, 3], -self.lr), rtol=1e-05
) )
def func_test_adam_with_varbase_list_input(self): def test_adam_with_varbase_list_input(self):
self.run_optimizer_step_with_varbase_list_input(optimizer.Adam) self.run_optimizer_step_with_varbase_list_input(optimizer.Adam)
self.run_optimizer_minimize_with_varbase_list_input(optimizer.Adam) self.run_optimizer_minimize_with_varbase_list_input(optimizer.Adam)
def test_adam_with_varbase_list_input(self): def test_sgd_with_varbase_list_input(self):
with _test_eager_guard():
self.func_test_adam_with_varbase_list_input()
self.func_test_adam_with_varbase_list_input()
def func_test_sgd_with_varbase_list_input(self):
self.run_optimizer_step_with_varbase_list_input(optimizer.SGD) self.run_optimizer_step_with_varbase_list_input(optimizer.SGD)
self.run_optimizer_minimize_with_varbase_list_input(optimizer.SGD) self.run_optimizer_minimize_with_varbase_list_input(optimizer.SGD)
def test_sgd_with_varbase_list_input(self): def test_adagrad_with_varbase_list_input(self):
with _test_eager_guard():
self.func_test_sgd_with_varbase_list_input()
self.func_test_sgd_with_varbase_list_input()
def func_test_adagrad_with_varbase_list_input(self):
self.run_optimizer_step_with_varbase_list_input(optimizer.Adagrad) self.run_optimizer_step_with_varbase_list_input(optimizer.Adagrad)
self.run_optimizer_minimize_with_varbase_list_input(optimizer.Adagrad) self.run_optimizer_minimize_with_varbase_list_input(optimizer.Adagrad)
def test_adagrad_with_varbase_list_input(self): def test_adamw_with_varbase_list_input(self):
with _test_eager_guard():
self.func_test_adagrad_with_varbase_list_input()
self.func_test_adagrad_with_varbase_list_input()
def func_test_adamw_with_varbase_list_input(self):
self.run_optimizer_step_with_varbase_list_input(optimizer.AdamW) self.run_optimizer_step_with_varbase_list_input(optimizer.AdamW)
self.run_optimizer_minimize_with_varbase_list_input(optimizer.AdamW) self.run_optimizer_minimize_with_varbase_list_input(optimizer.AdamW)
def test_adamw_with_varbase_list_input(self): def test_adamax_with_varbase_list_input(self):
with _test_eager_guard():
self.func_test_adamw_with_varbase_list_input()
self.func_test_adamw_with_varbase_list_input()
def func_test_adamax_with_varbase_list_input(self):
self.run_optimizer_step_with_varbase_list_input(optimizer.Adamax) self.run_optimizer_step_with_varbase_list_input(optimizer.Adamax)
self.run_optimizer_minimize_with_varbase_list_input(optimizer.Adamax) self.run_optimizer_minimize_with_varbase_list_input(optimizer.Adamax)
def test_adamax_with_varbase_list_input(self): def test_momentum_with_varbase_list_input(self):
with _test_eager_guard():
self.func_test_adamax_with_varbase_list_input()
self.func_test_adamax_with_varbase_list_input()
def func_test_momentum_with_varbase_list_input(self):
self.run_optimizer_step_with_varbase_list_input(optimizer.Momentum) self.run_optimizer_step_with_varbase_list_input(optimizer.Momentum)
self.run_optimizer_minimize_with_varbase_list_input(optimizer.Momentum) self.run_optimizer_minimize_with_varbase_list_input(optimizer.Momentum)
def test_momentum_with_varbase_list_input(self): def test_optimizer_with_varbase_input(self):
with _test_eager_guard():
self.func_test_momentum_with_varbase_list_input()
self.func_test_momentum_with_varbase_list_input()
def func_test_optimizer_with_varbase_input(self):
x = paddle.zeros([2, 3]) x = paddle.zeros([2, 3])
with self.assertRaises(TypeError): with self.assertRaises(TypeError):
optimizer.Adam(learning_rate=self.lr, parameters=x) optimizer.Adam(learning_rate=self.lr, parameters=x)
def test_optimizer_with_varbase_input(self): def test_create_param_lr_with_1_for_coverage(self):
with _test_eager_guard():
self.func_test_optimizer_with_varbase_input()
self.func_test_optimizer_with_varbase_input()
def func_test_create_param_lr_with_1_for_coverage(self):
if _in_legacy_dygraph(): if _in_legacy_dygraph():
x = paddle.fluid.framework.ParamBase( x = paddle.fluid.framework.ParamBase(
dtype="float32", dtype="float32",
...@@ -151,12 +116,7 @@ class TestOptimizerForVarBase(unittest.TestCase): ...@@ -151,12 +116,7 @@ class TestOptimizerForVarBase(unittest.TestCase):
z.backward() z.backward()
opt.step() opt.step()
def test_create_param_lr_with_1_for_coverage(self): def test_create_param_lr_with_no_1_value_for_coverage(self):
with _test_eager_guard():
self.func_test_create_param_lr_with_1_for_coverage()
self.func_test_create_param_lr_with_1_for_coverage()
def func_test_create_param_lr_with_no_1_value_for_coverage(self):
if _in_legacy_dygraph(): if _in_legacy_dygraph():
x = paddle.fluid.framework.ParamBase( x = paddle.fluid.framework.ParamBase(
dtype="float32", dtype="float32",
...@@ -184,11 +144,6 @@ class TestOptimizerForVarBase(unittest.TestCase): ...@@ -184,11 +144,6 @@ class TestOptimizerForVarBase(unittest.TestCase):
z.backward() z.backward()
opt.step() opt.step()
def test_create_param_lr_with_no_1_value_for_coverage(self):
with _test_eager_guard():
self.func_test_create_param_lr_with_1_for_coverage()
self.func_test_create_param_lr_with_1_for_coverage()
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
...@@ -17,7 +17,6 @@ import unittest ...@@ -17,7 +17,6 @@ import unittest
import numpy as np import numpy as np
import paddle import paddle
from paddle.fluid.framework import _test_eager_guard
from paddle.static import Program, program_guard from paddle.static import Program, program_guard
...@@ -54,7 +53,7 @@ class TestMultiplyApi(unittest.TestCase): ...@@ -54,7 +53,7 @@ class TestMultiplyApi(unittest.TestCase):
res = paddle.outer(x, y) res = paddle.outer(x, y)
return res.numpy() return res.numpy()
def func_test_multiply(self): def test_multiply(self):
np.random.seed(7) np.random.seed(7)
# test static computation graph: 3-d array # test static computation graph: 3-d array
...@@ -113,14 +112,9 @@ class TestMultiplyApi(unittest.TestCase): ...@@ -113,14 +112,9 @@ class TestMultiplyApi(unittest.TestCase):
res = self._run_dynamic_graph_case(x_data, y_data) res = self._run_dynamic_graph_case(x_data, y_data)
np.testing.assert_allclose(res, np.outer(x_data, y_data), rtol=1e-05) np.testing.assert_allclose(res, np.outer(x_data, y_data), rtol=1e-05)
def test_multiply(self):
with _test_eager_guard():
self.func_test_multiply()
self.func_test_multiply()
class TestMultiplyError(unittest.TestCase): class TestMultiplyError(unittest.TestCase):
def func_test_errors(self): def test_errors(self):
# test static computation graph: dtype can not be int8 # test static computation graph: dtype can not be int8
paddle.enable_static() paddle.enable_static()
with program_guard(Program(), Program()): with program_guard(Program(), Program()):
...@@ -161,11 +155,6 @@ class TestMultiplyError(unittest.TestCase): ...@@ -161,11 +155,6 @@ class TestMultiplyError(unittest.TestCase):
y_data = np.random.randn(200).astype(np.float32) y_data = np.random.randn(200).astype(np.float32)
self.assertRaises(ValueError, paddle.outer, x_data, y_data) self.assertRaises(ValueError, paddle.outer, x_data, y_data)
def test_errors(self):
with _test_eager_guard():
self.func_test_errors()
self.func_test_errors()
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -19,7 +19,7 @@ import numpy as np ...@@ -19,7 +19,7 @@ import numpy as np
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.framework import _in_legacy_dygraph, _test_eager_guard from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.wrapped_decorator import wrap_decorator from paddle.fluid.wrapped_decorator import wrap_decorator
...@@ -68,7 +68,7 @@ class TestDygraphDoubleGrad(TestCase): ...@@ -68,7 +68,7 @@ class TestDygraphDoubleGrad(TestCase):
) )
@dygraph_guard @dygraph_guard
def func_exception(self): def test_exception(self):
with self.assertRaises(AssertionError): with self.assertRaises(AssertionError):
self.grad(None, None) self.grad(None, None)
...@@ -101,13 +101,8 @@ class TestDygraphDoubleGrad(TestCase): ...@@ -101,13 +101,8 @@ class TestDygraphDoubleGrad(TestCase):
with self.assertRaises(AssertionError): with self.assertRaises(AssertionError):
self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1) self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)
def test_exception(self):
with _test_eager_guard():
self.func_exception()
self.func_exception()
@dygraph_guard @dygraph_guard
def func_simple_example(self): def test_simple_example(self):
x = random_var(self.shape) x = random_var(self.shape)
x.stop_gradient = False x.stop_gradient = False
y = x + 1 y = x + 1
...@@ -141,13 +136,8 @@ class TestDygraphDoubleGrad(TestCase): ...@@ -141,13 +136,8 @@ class TestDygraphDoubleGrad(TestCase):
grad_with_none_and_not_none.stop_gradient, create_graph grad_with_none_and_not_none.stop_gradient, create_graph
) )
def test_simple_example(self):
with _test_eager_guard():
self.func_simple_example()
self.func_simple_example()
@dygraph_guard @dygraph_guard
def func_none_one_initial_gradient(self): def test_none_one_initial_gradient(self):
numel = 1 numel = 1
for s in self.shape: for s in self.shape:
numel *= s numel *= s
...@@ -223,11 +213,6 @@ class TestDygraphDoubleGrad(TestCase): ...@@ -223,11 +213,6 @@ class TestDygraphDoubleGrad(TestCase):
grad_z.numpy(), original_random_grad_z grad_z.numpy(), original_random_grad_z
) )
def test_none_one_initial_gradient(self):
with _test_eager_guard():
self.func_none_one_initial_gradient()
self.func_none_one_initial_gradient()
@dygraph_guard @dygraph_guard
def func_example_with_gradient_accumulation_and_create_graph(self): def func_example_with_gradient_accumulation_and_create_graph(self):
x = random_var(self.shape) x = random_var(self.shape)
...@@ -269,13 +254,8 @@ class TestDygraphDoubleGrad(TestCase): ...@@ -269,13 +254,8 @@ class TestDygraphDoubleGrad(TestCase):
x_grad_actual, x_grad_expected, rtol=1e-05 x_grad_actual, x_grad_expected, rtol=1e-05
) )
def test_example_with_gradient_accumulation_and_create_graph(self):
with _test_eager_guard():
self.func_example_with_gradient_accumulation_and_create_graph()
self.func_example_with_gradient_accumulation_and_create_graph()
@dygraph_guard @dygraph_guard
def func_example_with_gradient_accumulation_and_no_grad_vars(self): def test_example_with_gradient_accumulation_and_no_grad_vars(self):
x = random_var(self.shape) x = random_var(self.shape)
x_np = x.numpy() x_np = x.numpy()
numel = x_np.size numel = x_np.size
...@@ -321,13 +301,8 @@ class TestDygraphDoubleGrad(TestCase): ...@@ -321,13 +301,8 @@ class TestDygraphDoubleGrad(TestCase):
x_grad_actual, x_grad_expected, rtol=1e-05 x_grad_actual, x_grad_expected, rtol=1e-05
) )
def test_example_with_gradient_accumulation_and_no_grad_vars(self):
with _test_eager_guard():
self.func_example_with_gradient_accumulation_and_no_grad_vars()
self.func_example_with_gradient_accumulation_and_no_grad_vars()
@dygraph_guard @dygraph_guard
def func_example_with_gradient_accumulation_and_not_create_graph(self): def test_example_with_gradient_accumulation_and_not_create_graph(self):
x = random_var(self.shape) x = random_var(self.shape)
x_np = x.numpy() x_np = x.numpy()
numel = x_np.size numel = x_np.size
...@@ -363,11 +338,6 @@ class TestDygraphDoubleGrad(TestCase): ...@@ -363,11 +338,6 @@ class TestDygraphDoubleGrad(TestCase):
x_grad_actual, x_grad_expected, rtol=1e-05 x_grad_actual, x_grad_expected, rtol=1e-05
) )
def test_example_with_gradient_accumulation_and_not_create_graph(self):
with _test_eager_guard():
self.func_example_with_gradient_accumulation_and_not_create_graph()
self.func_example_with_gradient_accumulation_and_not_create_graph()
class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad): class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
def setUp(self): def setUp(self):
......
...@@ -22,12 +22,7 @@ import paddle.fluid.core as core ...@@ -22,12 +22,7 @@ import paddle.fluid.core as core
import paddle.fluid.io as io import paddle.fluid.io as io
from paddle.fluid.dygraph import guard from paddle.fluid.dygraph import guard
from paddle.fluid.executor import Executor from paddle.fluid.executor import Executor
from paddle.fluid.framework import ( from paddle.fluid.framework import ParamBase, Variable, default_main_program
ParamBase,
Variable,
_test_eager_guard,
default_main_program,
)
from paddle.fluid.initializer import ConstantInitializer from paddle.fluid.initializer import ConstantInitializer
paddle.enable_static() paddle.enable_static()
...@@ -59,7 +54,7 @@ class ParameterChecks(unittest.TestCase): ...@@ -59,7 +54,7 @@ class ParameterChecks(unittest.TestCase):
zero_dim_param = b.create_parameter(name='x', shape=[], dtype='float32') zero_dim_param = b.create_parameter(name='x', shape=[], dtype='float32')
self.assertEqual(zero_dim_param.shape, ()) self.assertEqual(zero_dim_param.shape, ())
def func_parambase(self): def test_parambase(self):
with guard(): with guard():
linear = paddle.nn.Linear(10, 10) linear = paddle.nn.Linear(10, 10)
param = linear.weight param = linear.weight
...@@ -85,11 +80,6 @@ class ParameterChecks(unittest.TestCase): ...@@ -85,11 +80,6 @@ class ParameterChecks(unittest.TestCase):
zero_dim_param = ParamBase(shape=[], dtype='float32') zero_dim_param = ParamBase(shape=[], dtype='float32')
self.assertEqual(zero_dim_param.shape, []) self.assertEqual(zero_dim_param.shape, [])
def test_parambase(self):
with _test_eager_guard():
self.func_parambase()
self.func_parambase()
def func_exception(self): def func_exception(self):
b = main_program.global_block() b = main_program.global_block()
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
...@@ -109,7 +99,7 @@ class ParameterChecks(unittest.TestCase): ...@@ -109,7 +99,7 @@ class ParameterChecks(unittest.TestCase):
name='test', shape=[-1], dtype='float32', initializer=None name='test', shape=[-1], dtype='float32', initializer=None
) )
def func_parambase_to_vector(self): def test_parambase_to_vector(self):
with guard(): with guard():
initializer = paddle.ParamAttr( initializer = paddle.ParamAttr(
initializer=paddle.nn.initializer.Constant(3.0) initializer=paddle.nn.initializer.Constant(3.0)
...@@ -135,11 +125,6 @@ class ParameterChecks(unittest.TestCase): ...@@ -135,11 +125,6 @@ class ParameterChecks(unittest.TestCase):
self.assertTrue(linear2.weight.is_leaf, True) self.assertTrue(linear2.weight.is_leaf, True)
self.assertTrue(linear2.bias.is_leaf, True) self.assertTrue(linear2.bias.is_leaf, True)
def test_parambase_to_vector(self):
with _test_eager_guard():
self.func_parambase_to_vector()
self.func_parambase_to_vector()
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -19,7 +19,6 @@ import numpy as np ...@@ -19,7 +19,6 @@ import numpy as np
from op_test import OpTest from op_test import OpTest
import paddle import paddle
from paddle.fluid.framework import _test_eager_guard
paddle.enable_static() paddle.enable_static()
paddle.seed(100) paddle.seed(100)
...@@ -103,13 +102,12 @@ class TestPoissonAPI(unittest.TestCase): ...@@ -103,13 +102,12 @@ class TestPoissonAPI(unittest.TestCase):
y = paddle.poisson(x) y = paddle.poisson(x)
self.assertTrue(np.min(y.numpy()) >= 0) self.assertTrue(np.min(y.numpy()) >= 0)
with _test_eager_guard(): x = paddle.randn([10, 10], dtype='float32')
x = paddle.randn([10, 10], dtype='float32') x.stop_gradient = False
x.stop_gradient = False y = paddle.poisson(x)
y = paddle.poisson(x) y.backward()
y.backward() self.assertTrue(np.min(y.numpy()) >= 0)
self.assertTrue(np.min(y.numpy()) >= 0) np.testing.assert_array_equal(np.zeros_like(x), x.gradient())
np.testing.assert_array_equal(np.zeros_like(x), x.gradient())
def test_fixed_random_number(self): def test_fixed_random_number(self):
# Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t' # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
......
...@@ -20,7 +20,6 @@ import paddle ...@@ -20,7 +20,6 @@ import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.nn.functional as F import paddle.nn.functional as F
from paddle.fluid.framework import _test_eager_guard
def adaptive_start_index(index, input_size, output_size): def adaptive_start_index(index, input_size, output_size):
...@@ -274,10 +273,6 @@ class TestPool1D_API(unittest.TestCase): ...@@ -274,10 +273,6 @@ class TestPool1D_API(unittest.TestCase):
self.check_avg_dygraph_padding_same(place) self.check_avg_dygraph_padding_same(place)
self.check_max_dygraph_return_index_results(place) self.check_max_dygraph_return_index_results(place)
def test_dygraph_api(self):
with _test_eager_guard():
self.test_pool1d()
class TestPool2DError_API(unittest.TestCase): class TestPool2DError_API(unittest.TestCase):
def test_error_api(self): def test_error_api(self):
...@@ -422,10 +417,6 @@ class TestPool2DError_API(unittest.TestCase): ...@@ -422,10 +417,6 @@ class TestPool2DError_API(unittest.TestCase):
self.assertRaises(ValueError, run_stride_out_of_range) self.assertRaises(ValueError, run_stride_out_of_range)
def test_dygraph_api(self):
with _test_eager_guard():
self.test_error_api()
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册