未验证 提交 29d50d20 编写于 作者: Z zhang wenhui 提交者: GitHub

【NPU】Support npu kernel for matmul op (#31544)

* add matmulv2_npu

* add matmul

* add matmul
上级 f400ce9f
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/matmul_v2_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class MatMulV2NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* out = ctx.Output<framework::Tensor>("Out");
bool transpose_x = ctx.Attr<bool>("trans_x");
bool transpose_y = ctx.Attr<bool>("trans_y");
if (x->dims().size() == 2) {
out->mutable_data<T>(ctx.GetPlace());
auto runner = NpuOpRunner(
"MatMul", {*x, *y}, {*out},
{{"transpose_x1", transpose_x}, {"transpose_x2", transpose_y}});
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
} else if (x->dims().size() > 2) {
out->mutable_data<T>(ctx.GetPlace());
auto runner =
NpuOpRunner("BatchMatMul", {*x, *y}, {*out},
{{"adj_x1", transpose_x}, {"adj_x2", transpose_y}});
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
}
};
template <typename DeviceContext, typename T>
class MatMulV2GradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
bool transpose_y = ctx.Attr<bool>("trans_y");
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
if (x->dims().size() == 2) {
if (transpose_y) {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
auto runner_dx =
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
{{"transpose_x1", false}, {"transpose_x2", false}});
runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
auto runner_dy =
NpuOpRunner("MatMul", {*dout, *x}, {*dy},
{{"transpose_x1", true}, {"transpose_x2", false}});
runner_dy.Run(stream);
}
} else {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
auto runner_dx =
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
{{"transpose_x1", false}, {"transpose_x2", true}});
runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
auto runner_dy =
NpuOpRunner("MatMul", {*x, *dout}, {*dy},
{{"transpose_x1", true}, {"transpose_x2", false}});
runner_dy.Run(stream);
}
}
} else if (x->dims().size() > 2) {
if (transpose_y) {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
auto runner_dx = NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
{{"adj_x1", false}, {"adj_x2", false}});
runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
auto runner_dy = NpuOpRunner("BatchMatMul", {*dout, *x}, {*dy},
{{"adj_x1", true}, {"adj_x2", false}});
runner_dy.Run(stream);
}
} else {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
auto runner_dx = NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
{{"adj_x1", false}, {"adj_x2", true}});
runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
auto runner_dy = NpuOpRunner("BatchMatMul", {*x, *dout}, {*dy},
{{"adj_x1", true}, {"adj_x2", false}});
runner_dy.Run(stream);
}
}
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
matmul_v2,
ops::MatMulV2NPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MatMulV2NPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
matmul_v2_grad,
ops::MatMulV2GradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MatMulV2GradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
paddle.enable_static()
SEED = 2021
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
"""Reference forward implementation using np.matmul."""
# np.matmul does not support the transpose flags, so we manually
# transpose X and Y appropriately.
if transpose_X:
if X.ndim == 1:
X = X.reshape((X.size, ))
elif X.ndim == 2:
X = X.T
else:
dim = [i for i in range(len(X.shape))]
dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
X = np.transpose(X, tuple(dim))
if transpose_Y:
if Y.ndim == 1:
Y = Y.reshape((Y.size, ))
else:
dim = [i for i in range(len(Y.shape))]
dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
Y = np.transpose(Y, tuple(dim))
Out = np.matmul(X, Y)
if not Out.shape:
# We do not support 0-dimensional Tensors (scalars). So where
# np.matmul outputs a scalar, we must convert to a Tensor of
# shape (1, ) instead.
# Everywhere else, we are compatible with np.matmul.
Out = np.array([Out], dtype="float64")
return Out
class TestMatMul(OpTest):
def config(self):
self.x_shape = (100, 24)
self.y_shape = (24, 100)
self.trans_x = False
self.trans_y = False
def setUp(self):
self.set_npu()
self.op_type = "matmul_v2"
self.place = paddle.NPUPlace(0)
self.init_dtype()
self.config()
np.random.seed(SEED)
x = np.random.random(self.x_shape).astype(self.dtype)
y = np.random.random(self.y_shape).astype(self.dtype)
# -0.1 ~ 0.1
x = -0.1 + 0.2 * x
y = -0.1 + 0.2 * y
result = reference_matmul(x, y, self.trans_x, self.trans_y)
result = result.astype(self.dtype)
self.inputs = {
'X': x,
'Y': y,
}
self.attrs = {'trans_x': self.trans_x, 'trans_y': self.trans_y}
self.outputs = {'Out': result}
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-5)
# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
class TestMatMul2(TestMatMul):
"""
case 2
"""
def config(self):
self.x_shape = (32, 24)
self.y_shape = (32, 24)
self.trans_x = False
self.trans_y = True
class TestMatMul3(TestMatMul):
"""
case 3
"""
def init_dtype(self):
self.dtype = np.float16
class TestMatMul4(TestMatMul):
"""
case 4 dim=3
"""
def config(self):
self.x_shape = (2, 3, 4)
self.y_shape = (2, 4, 3)
self.trans_x = False
self.trans_y = False
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestMatMulNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(2, 3)).astype('float32')
b_np = np.random.random(size=(2, 3)).astype('float32')
c_np = np.random.random(size=(3, 2)).astype('float32')
d_np = np.random.random(size=(3, 2)).astype('float32')
label_np = np.random.randint(2, size=(2, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[2, 3], dtype='float32')
b = paddle.static.data(name="b", shape=[2, 3], dtype='float32')
c = paddle.static.data(name="c", shape=[3, 2], dtype='float32')
d = paddle.static.data(name="d", shape=[3, 2], dtype='float32')
label = paddle.static.data(
name="label", shape=[2, 1], dtype='int64')
sum_1 = paddle.add(a, b)
sum_2 = paddle.add(c, d)
result = paddle.matmul(sum_1, sum_2)
fc_1 = fluid.layers.fc(input=result, size=8)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(main_prog,
feed={
"a": a_np,
"b": b_np,
"c": c_np,
"d": d_np,
"label": label_np
},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册