Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
295e87e4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
295e87e4
编写于
9月 30, 2020
作者:
L
lijianshe02
提交者:
GitHub
9月 30, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix dice_loss, log_loss doc and example code test=document_fix (#27702)
* update 2.0 API for dice_loss and log_loss test=document_fix
上级
8d68dd47
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
21 addition
and
17 deletion
+21
-17
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+21
-17
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
295e87e4
...
@@ -7061,10 +7061,10 @@ def dice_loss(input, label, epsilon=0.00001, name=None):
...
@@ -7061,10 +7061,10 @@ def dice_loss(input, label, epsilon=0.00001, name=None):
Parameters:
Parameters:
input (
Variable
): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
input (
Tensor
): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
The data type can be float32 or float64.
The data type can be float32 or float64.
label (
Variable
): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`.
label (
Tensor
): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`.
where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
epsilon (float): The epsilon will be added to the numerator and denominator.
epsilon (float): The epsilon will be added to the numerator and denominator.
If both input and label are empty, it makes sure dice is 1.
If both input and label are empty, it makes sure dice is 1.
...
@@ -7074,18 +7074,19 @@ def dice_loss(input, label, epsilon=0.00001, name=None):
...
@@ -7074,18 +7074,19 @@ def dice_loss(input, label, epsilon=0.00001, name=None):
For more information, please refer to :ref:`api_guide_Name`
For more information, please refer to :ref:`api_guide_Name`
Returns:
Returns:
The dice loss with shape [1], data type is the same as `input` .
Tensor, which shape is [1], data type is the same as `input` .
Return Type:
Varaible
Example:
Example:
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
import paddle
x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
import paddle.nn.functional as F
label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
predictions = fluid.layers.sigmoid(x)
paddle.disable_static()
loss = fluid.layers.dice_loss(input=predictions, label=label)
x = paddle.randn((3,224,224,2))
label = paddle.randint(high=2, shape=(3,224,224,1))
predictions = F.softmax(x)
loss = F.dice_loss(input=predictions, label=label)
"""
"""
label = one_hot(label, depth=input.shape[-1])
label = one_hot(label, depth=input.shape[-1])
reduce_dim = list(range(1, len(input.shape)))
reduce_dim = list(range(1, len(input.shape)))
...
@@ -13098,10 +13099,10 @@ def log_loss(input, label, epsilon=1e-4, name=None):
...
@@ -13098,10 +13099,10 @@ def log_loss(input, label, epsilon=1e-4, name=None):
- (1 - label) * \\log{(1 - input + \\epsilon)}
- (1 - label) * \\log{(1 - input + \\epsilon)}
Args:
Args:
input (
Variable
|list): A 2-D tensor with shape [N x 1], where N is the
input (
Tensor
|list): A 2-D tensor with shape [N x 1], where N is the
batch size. This input is a probability computed
batch size. This input is a probability computed
by the previous operator. Data type float32.
by the previous operator. Data type float32.
label (
Variable
|list): The ground truth which is a 2-D tensor with
label (
Tensor
|list): The ground truth which is a 2-D tensor with
shape [N x 1], where N is the batch size.
shape [N x 1], where N is the batch size.
Data type float32.
Data type float32.
epsilon (float, optional): A small number for numerical stability. Default 1e-4.
epsilon (float, optional): A small number for numerical stability. Default 1e-4.
...
@@ -13109,15 +13110,18 @@ def log_loss(input, label, epsilon=1e-4, name=None):
...
@@ -13109,15 +13110,18 @@ def log_loss(input, label, epsilon=1e-4, name=None):
:ref:`api_guide_Name` . Usually name is no need to set and None by default.
:ref:`api_guide_Name` . Usually name is no need to set and None by default.
Returns:
Returns:
Variable: A 2-D tensor with shape [N x 1], the negative log loss
.
Tensor, which shape is [N x 1], data type is float32
.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
import paddle
label = fluid.data(name='label', shape=[None, 1], dtype='float32')
import paddle.nn.functional as F
prob = fluid.data(name='prob', shape=[None, 1], dtype='float32')
cost = fluid.layers.log_loss(input=prob, label=label)
paddle.disable_static()
label = paddle.randn((10,1))
prob = paddle.randn((10,1))
cost = F.log_loss(input=prob, label=label)
"""
"""
helper = LayerHelper('log_loss', **locals())
helper = LayerHelper('log_loss', **locals())
check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录