Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
292dfbce
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
292dfbce
编写于
7月 25, 2019
作者:
C
chengduo
提交者:
GitHub
7月 25, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix build strategy doc (#18725)
test=develop
上级
c167a4b4
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
62 addition
and
17 deletion
+62
-17
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+62
-17
未找到文件。
paddle/fluid/pybind/pybind.cc
浏览文件 @
292dfbce
...
...
@@ -1283,12 +1283,13 @@ All parameter, weight, gradient are variables in Paddle.
PADDLE_ENFORCE
(
!
self
.
IsFinalized
(),
"BuildStrategy is finlaized."
);
self
.
reduce_
=
strategy
;
},
R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
'AllReduce' and 'Reduce'. If you want that all the parameters'
optimization are done on all devices independently, you should choose 'AllReduce';
if you choose 'Reduce', all the parameters' optimization will be evenly distributed
to different devices, and then broadcast the optimized parameter to other devices.
In some models, `Reduce` is faster. Default 'AllReduce'.
R"DOC(The type is fluid.BuildStrategy.ReduceStrategy, there are two reduce
strategies in ParallelExecutor, AllReduce and Reduce. If you want
that all the parameters' optimization are done on all devices independently,
you should choose AllReduce; if you choose Reduce, all the parameters'
optimization will be evenly distributed to different devices, and then
broadcast the optimized parameter to other devices.
Default 'AllReduce'.
Examples:
.. code-block:: python
...
...
@@ -1302,21 +1303,62 @@ All parameter, weight, gradient are variables in Paddle.
[](
const
BuildStrategy
&
self
)
{
return
self
.
gradient_scale_
;
},
[](
BuildStrategy
&
self
,
BuildStrategy
::
GradientScaleStrategy
strategy
)
{
PADDLE_ENFORCE
(
!
self
.
IsFinalized
(),
"BuildStrategy is fin
la
ized."
);
PADDLE_ENFORCE
(
!
self
.
IsFinalized
(),
"BuildStrategy is fin
al
ized."
);
self
.
gradient_scale_
=
strategy
;
},
R"DOC(The type is
STR, there are three ways of defining :math:`loss@grad` in
ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default
,
ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
If you want to customize :math:`loss@grad`, you can choose 'Customized'.
Default 'CoeffNumDevice'.
R"DOC(The type is
fluid.BuildStrategy.GradientScaleStrategy, there are three
ways of defining :math:`loss@grad` in ParallelExecutor, CoeffNumDevice
,
One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
according to the number of devices. If you want to customize :math:`loss@grad`,
you can choose Customized.
Default 'CoeffNumDevice'.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import numpy
import os
use_cuda = True
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# NOTE: If you use CPU to run the program, you need
# to specify the CPU_NUM, otherwise, fluid will use
# all the number of the logic core as the CPU_NUM,
# in that case, the batch size of the input should be
# greater than CPU_NUM, if not, the process will be
# failed by an exception.
if not use_cuda:
os.environ['CPU_NUM'] = str(2)
places = fluid.cpu_places()
else:
places = places = fluid.cuda_places()
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)
fluid.default_startup_program().random_seed=1
exe.run(fluid.default_startup_program())
build_strategy = fluid.BuildStrategy()
build_strategy.gradient_scale_strategy = True
build_strategy.gradient_scale_strategy = \
fluid.BuildStrategy.GradientScaleStrategy.Customized
compiled_prog = compiler.CompiledProgram(
fluid.default_main_program()).with_data_parallel(
loss_name=loss.name, build_strategy=build_strategy,
places = places)
dev_count = len(places)
x = numpy.random.random(size=(10, 1)).astype('float32')
loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
loss_grad_name = loss.name+"@GRAD"
loss_data = exe.run(compiled_prog,
feed={"X": x, loss_grad_name : loss_grad},
fetch_list=[loss.name, loss_grad_name])
)DOC"
)
.
def_property
(
"debug_graphviz_path"
,
...
...
@@ -1325,7 +1367,7 @@ All parameter, weight, gradient are variables in Paddle.
PADDLE_ENFORCE
(
!
self
.
IsFinalized
(),
"BuildStrategy is finlaized."
);
self
.
debug_graphviz_path_
=
path
;
},
R"DOC(The type is STR, debug_graphviz_path indicate the path that
R"DOC(The type is STR, debug_graphviz_path indicate
s
the path that
writing the SSA Graph to file in the form of graphviz.
It is useful for debugging. Default ""
...
...
@@ -1334,7 +1376,8 @@ All parameter, weight, gradient are variables in Paddle.
import paddle.fluid as fluid
build_strategy = fluid.BuildStrategy()
build_strategy.debug_graphviz_path = ""
build_strategy.debug_graphviz_path = "./graph"
)DOC"
)
.
def_property
(
"enable_sequential_execution"
,
...
...
@@ -1345,7 +1388,8 @@ All parameter, weight, gradient are variables in Paddle.
PADDLE_ENFORCE
(
!
self
.
IsFinalized
(),
"BuildStrategy is finlaized."
);
self
.
enable_sequential_execution_
=
b
;
},
R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.
R"DOC(The type is BOOL. If set True, the execution order of ops would
be the same as what is in the program. Default False.
Examples:
.. code-block:: python
...
...
@@ -1363,7 +1407,8 @@ All parameter, weight, gradient are variables in Paddle.
PADDLE_ENFORCE
(
!
self
.
IsFinalized
(),
"BuildStrategy is finlaized."
);
self
.
remove_unnecessary_lock_
=
b
;
},
R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.
R"DOC(The type is BOOL. If set True, some locks in GPU ops would be
released and ParallelExecutor would run faster. Default True.
Examples:
.. code-block:: python
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录