Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
291e1594
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
291e1594
编写于
9月 25, 2020
作者:
C
chengmo
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
revert performance code
上级
d3cda7f7
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
33 addition
and
78 deletion
+33
-78
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+0
-1
paddle/fluid/operators/distributed/parameter_recv.cc
paddle/fluid/operators/distributed/parameter_recv.cc
+7
-7
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+13
-13
python/paddle/distributed/fleet/meta_optimizers/parameter_server_graph_optimizer.py
...fleet/meta_optimizers/parameter_server_graph_optimizer.py
+0
-4
python/paddle/distributed/fleet/meta_optimizers/parameter_server_optimizer.py
...buted/fleet/meta_optimizers/parameter_server_optimizer.py
+0
-13
python/paddle/distributed/fleet/runtime/parameter_server_runtime.py
...dle/distributed/fleet/runtime/parameter_server_runtime.py
+11
-16
python/paddle/fluid/incubate/fleet/parameter_server/ir/public.py
...paddle/fluid/incubate/fleet/parameter_server/ir/public.py
+2
-24
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
291e1594
...
...
@@ -97,7 +97,6 @@ message AsyncConfig {
optional
int32
thread_pool_size
=
6
[
default
=
1
];
optional
int32
send_wait_times
=
7
[
default
=
1
];
optional
bool
runtime_split_send_recv
=
8
[
default
=
false
];
optional
string
heter_worker_device
=
9
[
default
=
'cpu'
];
}
message
PipelineConfig
{
optional
int32
micro_batch
=
1
[
default
=
1
];
}
...
...
paddle/fluid/operators/distributed/parameter_recv.cc
浏览文件 @
291e1594
...
...
@@ -112,6 +112,10 @@ void RecvSelectedRows(const CommContext &rpc_ctx,
template
<
typename
T
>
void
RecvLodTensor
(
const
CommContext
&
rpc_ctx
,
const
framework
::
Scope
&
scope
)
{
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
cpu_place
=
platform
::
CPUPlace
();
auto
&
cpu_ctx
=
*
pool
.
Get
(
cpu_place
);
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
(
rpc_ctx
.
trainer_id
);
...
...
@@ -121,14 +125,10 @@ void RecvLodTensor(const CommContext &rpc_ctx, const framework::Scope &scope) {
if
(
rpc_ctx
.
origin_varnames
.
size
()
==
1
&&
rpc_ctx
.
splited_varnames
.
size
()
==
1
)
{
auto
varname
=
rpc_ctx
.
origin_varnames
[
0
];
const
auto
place
=
scope
.
FindVar
(
varname
)
->
Get
<
framework
::
LoDTensor
>
().
place
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
ctx
=
*
pool
.
Get
(
place
);
VLOG
(
4
)
<<
"recv "
<<
varname
<<
" from "
<<
rpc_ctx
.
epmap
[
0
]
<<
" in gpu? "
<<
platform
::
is_gpu_place
(
place
);
rets
.
push_back
(
rpc_client
->
AsyncGetVarNoBarrier
(
rpc_ctx
.
epmap
[
0
],
ctx
,
VLOG
(
4
)
<<
"recv "
<<
varname
<<
" from "
<<
rpc_ctx
.
epmap
[
0
];
rets
.
push_back
(
rpc_client
->
AsyncGetVarNoBarrier
(
rpc_ctx
.
epmap
[
0
],
cpu_ctx
,
scope
,
varname
,
varname
));
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE_NE
(
rets
[
i
]
->
Wait
(),
0U
,
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
291e1594
...
...
@@ -107,7 +107,7 @@ class DistributedStrategy(object):
All of the distributed training configurations can be configured in DistributedStrategy,
such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
asynchronous update parameter server(ASGD), etc.
DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file
Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
...
...
@@ -129,7 +129,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.dgc = True
...
...
@@ -207,7 +207,7 @@ class DistributedStrategy(object):
build_strategy.fuse_broadcast_ops = True
build_strategy.fuse_all_optimizer_ops = True
build_strategy.enable_inplace = True
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.build_strategy = build_strategy
"""
...
...
@@ -248,7 +248,7 @@ class DistributedStrategy(object):
strategy = fleet.DistributedStrategy()
strategy.a_sync = True # by default this is True
# code block for defining loss and local optimizer
# sgd = fleet.distributed_optimizer(optimizer, strategy)
"""
...
...
@@ -259,7 +259,7 @@ class DistributedStrategy(object):
def
a_sync
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
a_sync
=
flag
self
.
a_sync_configs
=
{
"k_steps"
:
0
,
"worker_device"
:
'cpu'
}
self
.
a_sync_configs
=
{
"k_steps"
:
0
}
else
:
raise
ValueError
(
"The type of `flag` is invalid, expected type is bool, but received %s"
.
...
...
@@ -472,7 +472,7 @@ class DistributedStrategy(object):
def
sync_batch_norm
(
self
):
"""
Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
Default value: False
Examples:
...
...
@@ -525,7 +525,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.fuse_grad_size_in_MB = 50
...
...
@@ -563,7 +563,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.nccl_comm_num = 2
...
...
@@ -595,7 +595,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.recompute = True
...
...
@@ -621,7 +621,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.pipeline = True
...
...
@@ -656,7 +656,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.pipeline = True
...
...
@@ -971,7 +971,7 @@ class DistributedStrategy(object):
[Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).
Default Value: False
Examples:
.. code-block:: python
...
...
@@ -1114,7 +1114,7 @@ class DistributedStrategy(object):
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy)
"""
return
self
.
strategy
.
conv_workspace_size_limit
...
...
python/paddle/distributed/fleet/meta_optimizers/parameter_server_graph_optimizer.py
浏览文件 @
291e1594
...
...
@@ -31,10 +31,6 @@ class ParameterServerGraphOptimizer(ParameterServerOptimizer):
if
k_steps
<
0
:
return
False
device
=
self
.
user_defined_strategy
.
a_sync_configs
[
"worker_device"
]
if
device
.
upper
()
!=
'CPU'
:
return
False
if
self
.
role_maker
.
_is_server
():
return
False
...
...
python/paddle/distributed/fleet/meta_optimizers/parameter_server_optimizer.py
浏览文件 @
291e1594
...
...
@@ -13,7 +13,6 @@
from
paddle
import
fluid
from
.meta_optimizer_base
import
MetaOptimizerBase
from
..base.private_helper_function
import
wait_server_ready
from
paddle.fluid
import
core
import
subprocess
import
re
...
...
@@ -75,8 +74,6 @@ class ParameterServerOptimizer(MetaOptimizerBase):
_startup
=
worker
.
delet_extra_optimizes_pass
(
_startup
,
compiled_config
)
compiled_config
.
set_origin_ps_main_program
(
_main
)
compiled_config
.
set_origin_ps_startup_program
(
_startup
)
# for heter program
if
self
.
role_maker
.
_is_heter_parameter_server_mode
:
from
paddle.fluid.incubate.fleet.parameter_server.ir
import
heter_trainer_pass
as
heter_worker
...
...
@@ -94,16 +91,6 @@ class ParameterServerOptimizer(MetaOptimizerBase):
else
:
_main
=
worker
.
append_send_ops_pass
(
_main
,
compiled_config
)
_startup
=
_startup
compiled_config
.
set_origin_ps_main_program
(
_main
)
compiled_config
.
set_origin_ps_startup_program
(
_startup
)
# for trainer wait server ready
wait_server_ready
(
self
.
role_maker
.
_get_pserver_endpoints
())
# for ps-heter mode, wait heter worker ready
if
self
.
role_maker
.
_is_heter_parameter_server_mode
and
self
.
role_maker
.
_is_worker
(
):
wait_server_ready
(
self
.
role_maker
.
_get_heter_worker_endpoints
())
return
_main
,
_startup
...
...
python/paddle/distributed/fleet/runtime/parameter_server_runtime.py
浏览文件 @
291e1594
...
...
@@ -94,8 +94,8 @@ class ParameterServerRuntime(RuntimeBase):
return
False
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
READER
:
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
READER
:
return
False
return
var
.
persistable
...
...
@@ -198,21 +198,16 @@ class ParameterServerRuntime(RuntimeBase):
warnings
.
warn
(
"communicator has been initialized, skip"
)
def
_get_executor
(
self
):
if
self
.
role_maker
.
_is_heter_worker
():
heter_worker_device
=
self
.
context
[
"valid_strategy"
].
a_sync_configs
[
"heter_worker_device"
].
upper
()
if
heter_worker_device
==
"GPU"
:
if
self
.
role_maker
.
_get_heter_worker_device
()
==
"GPU"
:
gpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
,
"0"
))
executor
=
Executor
(
fluid
.
CUDAPlace
(
gpu_id
))
elif
heter_worker_device
==
"XPU"
:
elif
self
.
role_maker
.
_get_heter_worker_device
()
==
"XPU"
:
xpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_xpus"
,
"0"
))
executor
=
Executor
(
fluid
.
XPUPlace
(
xpu_id
))
elif
heter_worker_device
==
"CPU"
:
fluid
.
Executor
(
fluid
.
CPUPlace
())
else
:
raise
ValueError
(
"
Heter Worker
Not Support Device {}"
.
format
(
heter_worker_device
))
raise
ValueError
(
"Not Support Device {}"
.
format
(
self
.
role_maker
.
_get_heter_worker_device
()
))
else
:
executor
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
return
executor
...
...
@@ -317,7 +312,7 @@ class ParameterServerRuntime(RuntimeBase):
opts
=
_get_optimize_ops
(
self
.
origin_main_program
)
for
op
in
opts
:
if
"Param"
in
op
.
input_names
and
\
"LearningRate"
in
op
.
input_names
and
op
.
input
(
"Param"
)[
0
]
==
param_name
:
"LearningRate"
in
op
.
input_names
and
op
.
input
(
"Param"
)[
0
]
==
param_name
:
return
op
def
_save_dense_params
(
self
,
executor
,
dirname
,
context
,
main_program
):
...
...
@@ -463,13 +458,13 @@ class ParameterServerRuntime(RuntimeBase):
def
_save_distributed_persistables
(
self
,
executor
,
dirname
,
main_program
):
dense_ctx
=
self
.
compiled_strategy
.
get_communicator_recv_context
(
recv_type
=
1
,
use_origin_program
=
True
)
recv_type
=
1
)
sparse_ctx
=
self
.
compiled_strategy
.
get_communicator_recv_context
(
recv_type
=
2
,
use_origin_program
=
True
)
recv_type
=
2
)
distributed_ctx
=
self
.
compiled_strategy
.
get_communicator_recv_context
(
recv_type
=
3
,
use_origin_program
=
True
)
recv_type
=
3
)
recv_dense_varnames
=
self
.
_save_dense_params
(
executor
,
dirname
,
dense_ctx
,
main_program
)
...
...
@@ -521,7 +516,7 @@ class ParameterServerRuntime(RuntimeBase):
)
if
main_program
is
None
:
main_program
=
self
.
compiled_strategy
.
get_origin_ps
_main_program
()
main_program
=
fluid
.
default
_main_program
()
if
isinstance
(
main_program
,
CompiledProgram
):
raise
TypeError
(
...
...
python/paddle/fluid/incubate/fleet/parameter_server/ir/public.py
浏览文件 @
291e1594
...
...
@@ -133,8 +133,6 @@ class CompileTimeStrategy(object):
self
.
origin_main_program
=
main_program
self
.
origin_startup_program
=
startup_program
self
.
origin_ps_main_program
=
main_program
self
.
origin_ps_startup_program
=
startup_program
self
.
strategy
=
strategy
self
.
role_maker
=
role_maker
...
...
@@ -155,11 +153,6 @@ class CompileTimeStrategy(object):
self
.
_build_var_distributed
()
# for heter-ps save variables
self
.
origin_merged_variables_pairs
=
list
(
self
.
merged_variables_pairs
)
self
.
origin_merged_dense_pairs
=
list
(
self
.
merged_dense_pairs
)
self
.
origin_merged_sparse_pairs
=
list
(
self
.
merged_sparse_pairs
)
def
get_distributed_mode
(
self
):
trainer
=
self
.
strategy
.
get_trainer_runtime_config
()
return
trainer
.
mode
...
...
@@ -221,18 +214,6 @@ class CompileTimeStrategy(object):
def
get_origin_startup_program
(
self
):
return
self
.
origin_startup_program
def
set_origin_ps_main_program
(
self
,
program
):
self
.
origin_ps_main_program
=
program
def
set_origin_ps_startup_program
(
self
,
program
):
self
.
origin_ps_startup_program
=
program
def
get_origin_ps_main_program
(
self
):
return
self
.
origin_ps_main_program
def
get_origin_ps_startup_program
(
self
):
return
self
.
origin_ps_startup_program
def
get_sparse_varname_on_ps
(
self
,
is_distributed
,
endpoint
=
None
):
if
not
endpoint
:
endpoint
=
self
.
get_ps_endpoint
()
...
...
@@ -397,9 +378,7 @@ class CompileTimeStrategy(object):
send_ctx
[
name
]
=
ctx
return
send_ctx
def
get_communicator_recv_context
(
self
,
recv_type
=
1
,
use_origin_program
=
False
):
def
get_communicator_recv_context
(
self
,
recv_type
=
1
):
# recv_type
# 1 : DENSE 2. SPARSE 3. DISTRIBUTED 4. ALL
distibuted_varnames
=
get_sparse_tablenames
(
self
.
origin_main_program
,
...
...
@@ -413,8 +392,7 @@ class CompileTimeStrategy(object):
sparse_recv_ctx
=
{}
distributed_recv_ctx
=
{}
variables_pairs
=
self
.
merged_variables_pairs
if
not
use_origin_program
else
self
.
origin_merged_variables_pairs
for
merged
in
variables_pairs
:
for
merged
in
self
.
merged_variables_pairs
:
params
=
merged
[
0
]
if
params
.
merged_var
.
name
in
sparse_varnames
:
continue
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录