Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
28b43111
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
28b43111
编写于
12月 01, 2021
作者:
F
Feiyu Chan
提交者:
GitHub
12月 01, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add angle_op (#37689)
* add angle_op
上级
3ef89a47
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
483 addition
and
2 deletion
+483
-2
paddle/fluid/operators/angle_op.cc
paddle/fluid/operators/angle_op.cc
+125
-0
paddle/fluid/operators/angle_op.cu
paddle/fluid/operators/angle_op.cu
+31
-0
paddle/fluid/operators/angle_op.h
paddle/fluid/operators/angle_op.h
+147
-0
paddle/fluid/platform/complex.h
paddle/fluid/platform/complex.h
+10
-0
python/paddle/__init__.py
python/paddle/__init__.py
+3
-1
python/paddle/fluid/tests/unittests/test_angle_op.py
python/paddle/fluid/tests/unittests/test_angle_op.py
+109
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+3
-1
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+55
-0
未找到文件。
paddle/fluid/operators/angle_op.cc
0 → 100644
浏览文件 @
28b43111
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/angle_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
class
AngleOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"angle"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"angle"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"X"
);
ctx
->
SetOutputDim
(
"Out"
,
in_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
class
AngleOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor), The input tensor of angle op."
);
AddOutput
(
"Out"
,
"(Tensor), The output tensor of angle op."
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need "
"install cudnn"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Angle Operator.
This operator is used to perform elementwise angle for input $X$.
$$out = angle(x)$$
)DOC"
);
}
};
class
AngleGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
"Out@Grad"
,
"angle_grad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"Out@Grad"
,
"angle_grad"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output"
,
"X@Grad"
,
"angle_grad"
);
auto
dout_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
dout_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
dtype
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
return
framework
::
OpKernelType
(
dtype
,
ctx
.
GetPlace
());
}
};
template
<
typename
T
>
class
AngleGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
void
Apply
(
GradOpPtr
<
T
>
retv
)
const
override
{
retv
->
SetType
(
"angle_grad"
);
retv
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
retv
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
retv
->
SetAttrMap
(
this
->
Attrs
());
retv
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
angle
,
ops
::
AngleOp
,
ops
::
AngleOpMaker
,
ops
::
AngleGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
AngleGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
angle
,
ops
::
AngleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
AngleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
AngleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
AngleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OPERATOR
(
angle_grad
,
ops
::
AngleGradOp
);
REGISTER_OP_CPU_KERNEL
(
angle_grad
,
ops
::
AngleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
AngleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
AngleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
AngleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
paddle/fluid/operators/angle_op.cu
0 → 100644
浏览文件 @
28b43111
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/angle_op.h"
#include "paddle/fluid/platform/complex.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
angle
,
ops
::
AngleKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
AngleKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
AngleKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
float
>>
,
ops
::
AngleKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
double
>>
);
REGISTER_OP_CUDA_KERNEL
(
angle_grad
,
ops
::
AngleGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
AngleGradKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
AngleGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
float
>>
,
ops
::
AngleGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
double
>>
);
paddle/fluid/operators/angle_op.h
0 → 100644
浏览文件 @
28b43111
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#include <cmath>
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T
,
typename
Enable
=
void
>
struct
AngleFunctor
;
// angel function for complex
template
<
typename
T
>
struct
AngleFunctor
<
T
,
Complex
<
T
,
Real
<
T
>>>
{
AngleFunctor
(
const
T
*
input
,
Real
<
T
>*
output
,
int64_t
numel
)
:
input_
(
input
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
output_
[
idx
]
=
arg
(
input_
[
idx
]);
}
const
T
*
input_
;
Real
<
T
>*
output_
;
int64_t
numel_
;
};
// angel function for real
template
<
typename
T
>
struct
AngleFunctor
<
T
,
NoComplex
<
T
,
Real
<
T
>>>
{
AngleFunctor
(
const
T
*
input
,
T
*
output
,
int64_t
numel
)
:
input_
(
input
),
output_
(
output
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
output_
[
idx
]
=
input_
[
idx
]
<
static_cast
<
T
>
(
0
)
?
M_PI
:
0
;
}
const
T
*
input_
;
T
*
output_
;
int64_t
numel_
;
};
template
<
typename
T
,
typename
Enable
=
void
>
struct
AngleGradFunctor
;
// angle grad for complex
template
<
typename
T
>
struct
AngleGradFunctor
<
T
,
Complex
<
T
,
Real
<
T
>>>
{
AngleGradFunctor
(
const
math
::
Real
<
T
>*
dout
,
const
T
*
x
,
T
*
dx
,
int64_t
numel
)
:
dout_
(
dout
),
x_
(
x
),
dx_
(
dx
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
if
(
x_
[
idx
]
==
T
(
0
))
{
dx_
[
idx
]
=
T
(
0
);
}
else
{
const
math
::
Real
<
T
>
r_square
=
x_
[
idx
].
real
*
x_
[
idx
].
real
+
x_
[
idx
].
imag
*
x_
[
idx
].
imag
;
dx_
[
idx
]
=
T
(
-
dout_
[
idx
]
*
x_
[
idx
].
imag
/
r_square
,
dout_
[
idx
]
*
x_
[
idx
].
real
/
r_square
);
}
}
const
math
::
Real
<
T
>*
dout_
;
const
T
*
x_
;
T
*
dx_
;
int64_t
numel_
;
};
// angle grad for real
template
<
typename
T
>
struct
AngleGradFunctor
<
T
,
NoComplex
<
T
,
Real
<
T
>>>
{
AngleGradFunctor
(
const
math
::
Real
<
T
>*
dout
,
const
T
*
x
,
T
*
dx
,
int64_t
numel
)
:
dout_
(
dout
),
x_
(
x
),
dx_
(
dx
),
numel_
(
numel
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
const
{
dx_
[
idx
]
=
0
;
}
const
math
::
Real
<
T
>*
dout_
;
const
T
*
x_
;
T
*
dx_
;
int64_t
numel_
;
};
}
// namespace math
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
AngleKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
numel
=
x
->
numel
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
math
::
Real
<
T
>>
(
context
.
GetPlace
(),
size_t
(
x
->
numel
()
*
sizeof
(
math
::
Real
<
T
>
)));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
AngleFunctor
<
T
>
functor
(
x_data
,
out_data
,
numel
);
for_range
(
functor
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
AngleGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
framework
::
Tensor
*
d_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
framework
::
Tensor
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
framework
::
Tensor
*
d_x
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
numel
=
d_out
->
numel
();
auto
*
dout_data
=
d_out
->
data
<
math
::
Real
<
T
>>
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
dx_data
=
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
static_cast
<
size_t
>
(
numel
*
sizeof
(
T
)));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
numel
);
math
::
AngleGradFunctor
<
T
>
functor
(
dout_data
,
x_data
,
dx_data
,
numel
);
for_range
(
functor
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/platform/complex.h
浏览文件 @
28b43111
...
@@ -401,6 +401,16 @@ HOSTDEVICE inline T abs(const complex<T>& a) {
...
@@ -401,6 +401,16 @@ HOSTDEVICE inline T abs(const complex<T>& a) {
#endif
#endif
}
}
template
<
typename
T
>
HOSTDEVICE
inline
T
arg
(
const
complex
<
T
>&
a
)
{
#if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX) && \
(defined(__CUDA_ARCH__) || defined(__HIPCC__))
return
thrust
::
arg
(
thrust
::
complex
<
T
>
(
a
));
#else
return
std
::
arg
(
std
::
complex
<
T
>
(
a
));
#endif
}
template
<
typename
T
>
template
<
typename
T
>
HOSTDEVICE
inline
complex
<
T
>
pow
(
const
complex
<
T
>&
a
,
const
complex
<
T
>&
b
)
{
HOSTDEVICE
inline
complex
<
T
>
pow
(
const
complex
<
T
>&
a
,
const
complex
<
T
>&
b
)
{
#if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX) && \
#if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX) && \
...
...
python/paddle/__init__.py
浏览文件 @
28b43111
...
@@ -226,6 +226,7 @@ from .tensor.math import lgamma # noqa: F401
...
@@ -226,6 +226,7 @@ from .tensor.math import lgamma # noqa: F401
from
.tensor.math
import
rad2deg
# noqa: F401
from
.tensor.math
import
rad2deg
# noqa: F401
from
.tensor.math
import
deg2rad
# noqa: F401
from
.tensor.math
import
deg2rad
# noqa: F401
from
.tensor.math
import
diff
# noqa: F401
from
.tensor.math
import
diff
# noqa: F401
from
.tensor.math
import
angle
# noqa: F401
from
.tensor.random
import
multinomial
# noqa: F401
from
.tensor.random
import
multinomial
# noqa: F401
from
.tensor.random
import
standard_normal
# noqa: F401
from
.tensor.random
import
standard_normal
# noqa: F401
...
@@ -537,5 +538,6 @@ __all__ = [ # noqa
...
@@ -537,5 +538,6 @@ __all__ = [ # noqa
'einsum'
,
'einsum'
,
'set_flags'
,
'set_flags'
,
'get_flags'
,
'get_flags'
,
'diff'
'diff'
,
'angle'
,
]
]
python/paddle/fluid/tests/unittests/test_angle_op.py
0 → 100644
浏览文件 @
28b43111
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
from
paddle.fluid
import
dygraph
from
paddle
import
static
paddle
.
enable_static
()
def
angle_grad
(
x
,
dout
):
if
np
.
iscomplexobj
(
x
):
def
angle_grad_element
(
xi
,
douti
):
if
xi
==
0
:
return
0
rsquare
=
np
.
abs
(
xi
)
**
2
return
-
douti
*
xi
.
imag
/
rsquare
+
1j
*
douti
*
xi
.
real
/
rsquare
return
np
.
vectorize
(
angle_grad_element
)(
x
,
dout
)
else
:
return
np
.
zeros_like
(
x
).
astype
(
x
.
dtype
)
class
TestAngleOpFloat
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"angle"
self
.
dtype
=
"float64"
self
.
x
=
np
.
linspace
(
-
5
,
5
,
101
).
astype
(
self
.
dtype
)
out_ref
=
np
.
angle
(
self
.
x
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
outputs
=
{
'Out'
:
out_ref
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
user_defined_grads
=
[
angle_grad
(
self
.
x
,
np
.
ones_like
(
self
.
x
)
/
self
.
x
.
size
)
])
class
TestAngleOpComplex
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"angle"
self
.
dtype
=
"complex128"
real
=
np
.
expand_dims
(
np
.
linspace
(
-
2
,
2
,
11
),
-
1
).
astype
(
"float64"
)
imag
=
np
.
linspace
(
-
2
,
2
,
11
).
astype
(
"float64"
)
self
.
x
=
real
+
1j
*
imag
out_ref
=
np
.
angle
(
self
.
x
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
outputs
=
{
'Out'
:
out_ref
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
user_defined_grads
=
[
angle_grad
(
self
.
x
,
np
.
ones_like
(
self
.
x
)
/
self
.
x
.
size
)
])
class
TestAngleAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
x
=
np
.
random
.
randn
(
2
,
3
)
+
1j
*
np
.
random
.
randn
(
2
,
3
)
self
.
out
=
np
.
angle
(
self
.
x
)
def
test_dygraph
(
self
):
with
dygraph
.
guard
():
x
=
paddle
.
to_tensor
(
self
.
x
)
out_np
=
paddle
.
angle
(
x
).
numpy
()
self
.
assertTrue
(
np
.
allclose
(
self
.
out
,
out_np
))
def
test_static
(
self
):
mp
,
sp
=
static
.
Program
(),
static
.
Program
()
with
static
.
program_guard
(
mp
,
sp
):
x
=
static
.
data
(
"x"
,
shape
=
[
2
,
3
],
dtype
=
"complex128"
)
out
=
paddle
.
angle
(
x
)
exe
=
static
.
Executor
()
exe
.
run
(
sp
)
[
out_np
]
=
exe
.
run
(
mp
,
feed
=
{
"x"
:
self
.
x
},
fetch_list
=
[
out
])
self
.
assertTrue
(
np
.
allclose
(
self
.
out
,
out_np
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
28b43111
...
@@ -192,6 +192,7 @@ from .math import diagonal # noqa: F401
...
@@ -192,6 +192,7 @@ from .math import diagonal # noqa: F401
from
.math
import
rad2deg
# noqa: F401
from
.math
import
rad2deg
# noqa: F401
from
.math
import
deg2rad
# noqa: F401
from
.math
import
deg2rad
# noqa: F401
from
.math
import
diff
# noqa: F401
from
.math
import
diff
# noqa: F401
from
.math
import
angle
# noqa: F401
from
.random
import
multinomial
# noqa: F401
from
.random
import
multinomial
# noqa: F401
from
.random
import
standard_normal
# noqa: F401
from
.random
import
standard_normal
# noqa: F401
...
@@ -404,7 +405,8 @@ tensor_method_func = [ #noqa
...
@@ -404,7 +405,8 @@ tensor_method_func = [ #noqa
'multi_dot'
,
'multi_dot'
,
'solve'
,
'solve'
,
'triangular_solve'
,
'triangular_solve'
,
'diff'
'diff'
,
'angle'
,
]
]
#this list used in math_op_patch.py for magic_method bind
#this list used in math_op_patch.py for magic_method bind
...
...
python/paddle/tensor/math.py
浏览文件 @
28b43111
...
@@ -24,6 +24,7 @@ from paddle.common_ops_import import templatedoc
...
@@ -24,6 +24,7 @@ from paddle.common_ops_import import templatedoc
from
paddle.common_ops_import
import
dygraph_utils
from
paddle.common_ops_import
import
dygraph_utils
from
paddle.tensor
import
cast
from
paddle.tensor
import
cast
from
paddle.tensor.attribute
import
_complex_to_real_dtype
import
paddle
import
paddle
from
..fluid
import
layers
from
..fluid
import
layers
from
..fluid.framework
import
core
,
_varbase_creator
,
in_dygraph_mode
,
Variable
,
convert_np_dtype_to_dtype_
from
..fluid.framework
import
core
,
_varbase_creator
,
in_dygraph_mode
,
Variable
,
convert_np_dtype_to_dtype_
...
@@ -2884,3 +2885,57 @@ def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
...
@@ -2884,3 +2885,57 @@ def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
out
=
layers
.
elementwise_sub
(
input_back
,
input_front
,
axis
=
axis
)
out
=
layers
.
elementwise_sub
(
input_back
,
input_front
,
axis
=
axis
)
return
out
return
out
def
angle
(
x
,
name
=
None
):
r
"""
Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
for negative real numbers, the angle is :math:`\pi`.
Equation:
.. math::
angle(x)=arctan2(x.imag, x.real)
Args:
x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
out (Tensor): y (Tensor): An N-D Tensor of real data type with the same precision as that of x's data type.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
z = x + 1j * y
print(z.numpy())
# [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
# [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
# [ 0.-2.j 0.-1.j 0.+0.j 0.+1.j]
# [ 1.-2.j 1.-1.j 1.+0.j 1.+1.j]]
theta = paddle.angle(z)
print(theta.numpy())
# [[-2.3561945 -2.6779451 3.1415927 2.6779451]
# [-2.0344439 -2.3561945 3.1415927 2.3561945]
# [-1.5707964 -1.5707964 0. 1.5707964]
# [-1.1071488 -0.7853982 0. 0.7853982]]
"""
if
in_dygraph_mode
():
return
_C_ops
.
angle
(
x
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
],
'angle'
)
op_type
=
"angle"
helper
=
LayerHelper
(
op_type
,
**
locals
())
inputs
=
{
"X"
:
x
}
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
_complex_to_real_dtype
(
x
.
dtype
))
outputs
=
{
"Out"
:
out
}
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
)
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录