Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
27f7a726
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
27f7a726
编写于
3月 19, 2019
作者:
C
ceci3
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into doc
上级
3f5f5ed3
c7f1f3ed
变更
130
展开全部
隐藏空白更改
内联
并排
Showing
130 changed file
with
3849 addition
and
746 deletion
+3849
-746
CMakeLists.txt
CMakeLists.txt
+2
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+13
-12
paddle/fluid/framework/details/graph_test_base.h
paddle/fluid/framework/details/graph_test_base.h
+5
-5
paddle/fluid/framework/details/op_registry.h
paddle/fluid/framework/details/op_registry.h
+4
-2
paddle/fluid/framework/grad_op_desc_maker.h
paddle/fluid/framework/grad_op_desc_maker.h
+5
-3
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+8
-1
paddle/fluid/framework/ir/cpu_quantize_pass.cc
paddle/fluid/framework/ir/cpu_quantize_pass.cc
+239
-0
paddle/fluid/framework/ir/cpu_quantize_pass.h
paddle/fluid/framework/ir/cpu_quantize_pass.h
+66
-0
paddle/fluid/framework/ir/cpu_quantize_pass_tester.cc
paddle/fluid/framework/ir/cpu_quantize_pass_tester.cc
+211
-0
paddle/fluid/framework/ir/cpu_quantize_placement_pass.cc
paddle/fluid/framework/ir/cpu_quantize_placement_pass.cc
+58
-0
paddle/fluid/framework/ir/cpu_quantize_placement_pass.h
paddle/fluid/framework/ir/cpu_quantize_placement_pass.h
+34
-0
paddle/fluid/framework/ir/cpu_quantize_placement_pass_tester.cc
.../fluid/framework/ir/cpu_quantize_placement_pass_tester.cc
+129
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+48
-3
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+29
-0
paddle/fluid/framework/ir/graph_test.cc
paddle/fluid/framework/ir/graph_test.cc
+7
-7
paddle/fluid/framework/ir/runtime_context_cache_pass.cc
paddle/fluid/framework/ir/runtime_context_cache_pass.cc
+39
-0
paddle/fluid/framework/ir/runtime_context_cache_pass.h
paddle/fluid/framework/ir/runtime_context_cache_pass.h
+32
-0
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+3
-1
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+21
-7
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+11
-0
paddle/fluid/framework/tensor_util.cc
paddle/fluid/framework/tensor_util.cc
+5
-0
paddle/fluid/framework/type_defs.h
paddle/fluid/framework/type_defs.h
+2
-1
paddle/fluid/framework/var_type_inference.h
paddle/fluid/framework/var_type_inference.h
+108
-9
paddle/fluid/framework/var_type_inference_test.cc
paddle/fluid/framework/var_type_inference_test.cc
+6
-6
paddle/fluid/imperative/CMakeLists.txt
paddle/fluid/imperative/CMakeLists.txt
+1
-0
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+71
-29
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+174
-27
paddle/fluid/imperative/profiler.cc
paddle/fluid/imperative/profiler.cc
+62
-0
paddle/fluid/imperative/profiler.h
paddle/fluid/imperative/profiler.h
+25
-0
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+26
-52
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+1
-1
paddle/fluid/imperative/type_defs.h
paddle/fluid/imperative/type_defs.h
+1
-0
paddle/fluid/inference/CMakeLists.txt
paddle/fluid/inference/CMakeLists.txt
+1
-1
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+6
-0
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+6
-5
paddle/fluid/inference/api/analysis_config.cc
paddle/fluid/inference/api/analysis_config.cc
+16
-1
paddle/fluid/inference/api/paddle_analysis_config.h
paddle/fluid/inference/api/paddle_analysis_config.h
+26
-0
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+1
-1
paddle/fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc
.../fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc
+1
-0
paddle/fluid/inference/tests/api/analyzer_transformer_tester.cc
.../fluid/inference/tests/api/analyzer_transformer_tester.cc
+18
-2
paddle/fluid/inference/tests/api/config_printer.h
paddle/fluid/inference/tests/api/config_printer.h
+2
-1
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+4
-2
paddle/fluid/operators/beam_search_decode_op.cc
paddle/fluid/operators/beam_search_decode_op.cc
+9
-12
paddle/fluid/operators/beam_search_op.cc
paddle/fluid/operators/beam_search_op.cc
+6
-9
paddle/fluid/operators/controlflow/get_places_op.cc
paddle/fluid/operators/controlflow/get_places_op.cc
+3
-5
paddle/fluid/operators/controlflow/tensor_array_read_write_op.cc
...fluid/operators/controlflow/tensor_array_read_write_op.cc
+6
-9
paddle/fluid/operators/controlflow/while_op.cc
paddle/fluid/operators/controlflow/while_op.cc
+7
-10
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+7
-0
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+1
-0
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+8
-7
paddle/fluid/operators/detection/yolo_box_op.cc
paddle/fluid/operators/detection/yolo_box_op.cc
+167
-0
paddle/fluid/operators/detection/yolo_box_op.cu
paddle/fluid/operators/detection/yolo_box_op.cu
+120
-0
paddle/fluid/operators/detection/yolo_box_op.h
paddle/fluid/operators/detection/yolo_box_op.h
+149
-0
paddle/fluid/operators/detection/yolov3_loss_op.cc
paddle/fluid/operators/detection/yolov3_loss_op.cc
+33
-0
paddle/fluid/operators/detection/yolov3_loss_op.h
paddle/fluid/operators/detection/yolov3_loss_op.h
+79
-26
paddle/fluid/operators/distributed_ops/fake_init_op.cc
paddle/fluid/operators/distributed_ops/fake_init_op.cc
+1
-2
paddle/fluid/operators/distributed_ops/merge_ids_op.cc
paddle/fluid/operators/distributed_ops/merge_ids_op.cc
+4
-5
paddle/fluid/operators/distributed_ops/split_ids_op.cc
paddle/fluid/operators/distributed_ops/split_ids_op.cc
+6
-5
paddle/fluid/operators/fake_quantize_op.cc
paddle/fluid/operators/fake_quantize_op.cc
+102
-0
paddle/fluid/operators/fake_quantize_op.cu
paddle/fluid/operators/fake_quantize_op.cu
+38
-0
paddle/fluid/operators/fake_quantize_op.h
paddle/fluid/operators/fake_quantize_op.h
+58
-1
paddle/fluid/operators/fc_op.cc
paddle/fluid/operators/fc_op.cc
+14
-13
paddle/fluid/operators/fc_op.h
paddle/fluid/operators/fc_op.h
+16
-0
paddle/fluid/operators/fill_constant_op.cc
paddle/fluid/operators/fill_constant_op.cc
+4
-5
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
+8
-9
paddle/fluid/operators/get_tensor_from_selected_rows_op.cc
paddle/fluid/operators/get_tensor_from_selected_rows_op.cc
+6
-9
paddle/fluid/operators/hash_op.cc
paddle/fluid/operators/hash_op.cc
+2
-1
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+9
-15
paddle/fluid/operators/lod_rank_table_op.cc
paddle/fluid/operators/lod_rank_table_op.cc
+3
-5
paddle/fluid/operators/lod_tensor_to_array_op.cc
paddle/fluid/operators/lod_tensor_to_array_op.cc
+3
-4
paddle/fluid/operators/lookup_table_op.cc
paddle/fluid/operators/lookup_table_op.cc
+6
-8
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
+1
-0
paddle/fluid/operators/mkldnn/fc_mkldnn_op.cc
paddle/fluid/operators/mkldnn/fc_mkldnn_op.cc
+16
-8
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
+27
-1
paddle/fluid/operators/nccl/nccl_op.cc
paddle/fluid/operators/nccl/nccl_op.cc
+3
-6
paddle/fluid/operators/nce_op.cc
paddle/fluid/operators/nce_op.cc
+6
-8
paddle/fluid/operators/ngraph/ngraph_engine_op.cc
paddle/fluid/operators/ngraph/ngraph_engine_op.cc
+1
-2
paddle/fluid/operators/optimizers/adam_op.h
paddle/fluid/operators/optimizers/adam_op.h
+15
-34
paddle/fluid/operators/optimizers/lars_momentum_op.cc
paddle/fluid/operators/optimizers/lars_momentum_op.cc
+3
-4
paddle/fluid/operators/optimizers/momentum_op.cc
paddle/fluid/operators/optimizers/momentum_op.cc
+7
-11
paddle/fluid/operators/optimizers/momentum_op.h
paddle/fluid/operators/optimizers/momentum_op.h
+6
-13
paddle/fluid/operators/optimizers/rmsprop_op.h
paddle/fluid/operators/optimizers/rmsprop_op.h
+4
-14
paddle/fluid/operators/optimizers/sgd_op.cc
paddle/fluid/operators/optimizers/sgd_op.cc
+6
-8
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+7
-0
paddle/fluid/operators/py_func_op.cc
paddle/fluid/operators/py_func_op.cc
+20
-21
paddle/fluid/operators/reader/create_custom_reader_op.cc
paddle/fluid/operators/reader/create_custom_reader_op.cc
+11
-12
paddle/fluid/operators/reader/read_op.cc
paddle/fluid/operators/reader/read_op.cc
+7
-10
paddle/fluid/operators/reader/reader_op_registry.cc
paddle/fluid/operators/reader/reader_op_registry.cc
+9
-12
paddle/fluid/operators/reader/reader_op_registry.h
paddle/fluid/operators/reader/reader_op_registry.h
+4
-4
paddle/fluid/operators/save_op.cc
paddle/fluid/operators/save_op.cc
+3
-6
paddle/fluid/operators/scale_op.cc
paddle/fluid/operators/scale_op.cc
+6
-9
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc
+2
-1
paddle/fluid/operators/slice_op.cu
paddle/fluid/operators/slice_op.cu
+7
-7
paddle/fluid/operators/softmax_with_cross_entropy_op.cu
paddle/fluid/operators/softmax_with_cross_entropy_op.cu
+2
-1
paddle/fluid/operators/split_selected_rows_op.cc
paddle/fluid/operators/split_selected_rows_op.cc
+5
-4
paddle/fluid/operators/squeeze_op.cc
paddle/fluid/operators/squeeze_op.cc
+1
-0
paddle/fluid/operators/sum_op.cc
paddle/fluid/operators/sum_op.cc
+13
-19
paddle/fluid/operators/tensor_array_to_tensor_op.cc
paddle/fluid/operators/tensor_array_to_tensor_op.cc
+3
-4
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
+1
-2
paddle/fluid/operators/uniform_random_op.cc
paddle/fluid/operators/uniform_random_op.cc
+7
-8
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+2
-0
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+4
-0
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+1
-1
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+4
-2
paddle/fluid/pybind/inference_api.cc
paddle/fluid/pybind/inference_api.cc
+4
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+7
-1
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-1
python/paddle/fluid/contrib/quantize/quantize_transpiler.py
python/paddle/fluid/contrib/quantize/quantize_transpiler.py
+74
-10
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+81
-5
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+13
-0
python/paddle/fluid/contrib/utils/lookup_table_utils.py
python/paddle/fluid/contrib/utils/lookup_table_utils.py
+227
-67
python/paddle/fluid/data_feeder.py
python/paddle/fluid/data_feeder.py
+3
-3
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+14
-6
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+5
-0
python/paddle/fluid/imperative/__init__.py
python/paddle/fluid/imperative/__init__.py
+4
-0
python/paddle/fluid/imperative/profiler.py
python/paddle/fluid/imperative/profiler.py
+30
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+109
-12
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+53
-14
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+20
-2
python/paddle/fluid/tests/unittests/mkldnn/test_transpose_int8_mkldnn_op.py
...d/tests/unittests/mkldnn/test_transpose_int8_mkldnn_op.py
+78
-0
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
+42
-0
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
+144
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+75
-0
python/paddle/fluid/tests/unittests/test_slice_op.py
python/paddle/fluid/tests/unittests/test_slice_op.py
+26
-0
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
+117
-0
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+70
-28
python/paddle/reader/__init__.py
python/paddle/reader/__init__.py
+2
-5
python/paddle/reader/creator.py
python/paddle/reader/creator.py
+14
-6
python/paddle/reader/decorator.py
python/paddle/reader/decorator.py
+13
-15
tools/manylinux1/build_scripts/build.sh
tools/manylinux1/build_scripts/build.sh
+6
-0
未找到文件。
CMakeLists.txt
浏览文件 @
27f7a726
...
...
@@ -24,6 +24,8 @@ message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: "
"
${
CMAKE_CXX_COMPILER_ID
}
${
CMAKE_CXX_COMPILER_VERSION
}
"
)
message
(
STATUS
"C compiler:
${
CMAKE_C_COMPILER
}
, version: "
"
${
CMAKE_C_COMPILER_ID
}
${
CMAKE_C_COMPILER_VERSION
}
"
)
message
(
STATUS
"AR tools:
${
CMAKE_AR
}
"
)
if
(
WIN32
)
set
(
CMAKE_SUPPRESS_REGENERATION ON
)
set
(
CMAKE_STATIC_LIBRARY_PREFIX lib
)
...
...
paddle/fluid/API.spec
浏览文件 @
27f7a726
...
...
@@ -12,7 +12,7 @@ paddle.fluid.program_guard (ArgSpec(args=['main_program', 'startup_program'], va
paddle.fluid.name_scope (ArgSpec(args=['prefix'], varargs=None, keywords=None, defaults=(None,)), ('document', '0ef753f5cec69fef9ae6ad8b867b33a2'))
paddle.fluid.Executor.__init__ (ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.Executor.close (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'f5369953dd0c443961cf79f7a00e1a03'))
paddle.fluid.Executor.run (ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)), ('document', '
aba8093edebf2d5c869b735b92811e45
'))
paddle.fluid.Executor.run (ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)), ('document', '
f482e93b38b4018796969a2e1dde479d
'))
paddle.fluid.global_scope (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'e148d3ab1ed8edf3e928212a375959c0'))
paddle.fluid.scope_guard (ArgSpec(args=['scope'], varargs=None, keywords=None, defaults=None), ('document', 'b94d1f6bcc29c4fb58fc0058561250c2'))
paddle.fluid.DistributeTranspiler.__init__ (ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
@@ -68,7 +68,7 @@ paddle.fluid.initializer.MSRAInitializer.__init__ (ArgSpec(args=['self', 'unifor
paddle.fluid.initializer.force_init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '6d0f3e22c90d9d500d36ff57daf056ee'))
paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'a6d7011ca3d8c0d454dac3a56eae0c29'))
paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)), ('document', '
1929058262994f212620599c63aea6bd
'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)), ('document', '
424e898365195e3ccbc2e7dc8b63605e
'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', '89c2c55a0b0656b106064048e068e77a'))
paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', 'dfbb624f85015df29e994ca6999e8ff6'))
paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', 'b4b608b986eb9617aa0525e1be21d32d'))
...
...
@@ -330,7 +330,8 @@ paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes',
paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '587845f60c5d97ffdf2dfd21da52eca1'))
paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '032d0f4b7d8f6235ee5d91e473344f0e'))
paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0e5ac2507723a0b5adec473f9556799b'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '991e934c3e09abf0edec7c9c978b4691'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gtscore', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', '57fa96922e42db8f064c3fb77f2255e8'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5566169a5ab993d177792c023c7fb340'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '397e9e02b451d99c56e20f268fa03f2e'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7bb011ec26bace2bc23235aa4a17647d'))
...
...
@@ -367,7 +368,7 @@ paddle.fluid.contrib.BeamSearchDecoder.read_array (ArgSpec(args=['self', 'init',
paddle.fluid.contrib.BeamSearchDecoder.update_array (ArgSpec(args=['self', 'array', 'value'], varargs=None, keywords=None, defaults=None), ('document', '5754e9b3212b7c09497151516a0de5a7'))
paddle.fluid.contrib.memory_usage (ArgSpec(args=['program', 'batch_size'], varargs=None, keywords=None, defaults=None), ('document', '8fcb2f93bb743693baa8d4860a5ccc47'))
paddle.fluid.contrib.op_freq_statistic (ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None), ('document', '4d43687113c4bf5b29d15aee2f4e4afa'))
paddle.fluid.contrib.QuantizeTranspiler.__init__ (ArgSpec(args=['self', 'weight_bits', 'activation_bits', 'activation_quantize_type', 'weight_quantize_type', 'window_size'
], varargs=None, keywords=None, defaults=(8, 8, 'abs_max', 'abs_max', 10000
)), ('document', '14b39f1fcd5667ff556b1aad94357d1d'))
paddle.fluid.contrib.QuantizeTranspiler.__init__ (ArgSpec(args=['self', 'weight_bits', 'activation_bits', 'activation_quantize_type', 'weight_quantize_type', 'window_size'
, 'moving_rate'], varargs=None, keywords=None, defaults=(8, 8, 'abs_max', 'abs_max', 10000, 0.9
)), ('document', '14b39f1fcd5667ff556b1aad94357d1d'))
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 (ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program (ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None)), ('document', '909675a1ab055c69b436a7893fcae4fd'))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile (ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6dd9909f10b283ba2892a99058a72884'))
...
...
@@ -392,9 +393,9 @@ paddle.fluid.contrib.MagnitudePruner.__init__ (ArgSpec(args=['self', 'threshold'
paddle.fluid.contrib.MagnitudePruner.prune (ArgSpec(args=['self', 'param', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.RatioPruner.__init__ (ArgSpec(args=['self', 'ratios'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e7a81a325b296a9ca502ee5adb4fc85d'))
paddle.fluid.contrib.RatioPruner.prune (ArgSpec(args=['self', 'param', 'ratio'], varargs=None, keywords=None, defaults=(None,)), ('document', '358cbf2978c91028fb96a195a9884645'))
paddle.fluid.contrib.load_persistables_for_increment (ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var', 'lookup_table_var_path'], varargs=None, keywords=None, defaults=None), ('document', '
11fbf7e8dd2289805de291b453a33ee
7'))
paddle.fluid.contrib.load_persistables_for_inference (ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var_name'], varargs=None, keywords=None, defaults=None), ('document', '5
b5577bb3d24070da819674255d16196
'))
paddle.fluid.contrib.convert_dist_to_sparse_program (ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None), ('document', '
4efbd93876832d4d35497cdbc7a1e6d8
'))
paddle.fluid.contrib.load_persistables_for_increment (ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var', 'lookup_table_var_path'], varargs=None, keywords=None, defaults=None), ('document', '
2ab36d4f7a564f5f65e455807ad06c6
7'))
paddle.fluid.contrib.load_persistables_for_inference (ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var_name'], varargs=None, keywords=None, defaults=None), ('document', '5
9066bac9db0ac6ce414d05780b7333f
'))
paddle.fluid.contrib.convert_dist_to_sparse_program (ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None), ('document', '
74c39c595dc70d6be2f16d8e462d282b
'))
paddle.fluid.contrib.HDFSClient.__init__ (ArgSpec(args=['self', 'hadoop_home', 'configs'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.HDFSClient.delete (ArgSpec(args=['self', 'hdfs_path'], varargs=None, keywords=None, defaults=None), ('document', 'c3721aa2d4d9ef5a857dd47b2681c03e'))
paddle.fluid.contrib.HDFSClient.download (ArgSpec(args=['self', 'hdfs_path', 'local_path', 'overwrite', 'unzip'], varargs=None, keywords=None, defaults=(False, False)), ('document', 'ca55bde92184d3fd0f9f5c963b25e634'))
...
...
@@ -493,7 +494,7 @@ paddle.fluid.CUDAPinnedPlace.__init__ __init__(self: paddle.fluid.core.CUDAPinne
paddle.fluid.ParamAttr.__init__ (ArgSpec(args=['self', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, 1.0, None, True, None, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.WeightNormParamAttr.__init__ (ArgSpec(args=['self', 'dim', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, None, 1.0, None, True, None, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.DataFeeder.__init__ (ArgSpec(args=['self', 'feed_list', 'place', 'program'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.DataFeeder.decorate_reader (ArgSpec(args=['self', 'reader', 'multi_devices', 'num_places', 'drop_last'], varargs=None, keywords=None, defaults=(None, True)), ('document', '
0eed2f198dc73c08a41b61edbc755753
'))
paddle.fluid.DataFeeder.decorate_reader (ArgSpec(args=['self', 'reader', 'multi_devices', 'num_places', 'drop_last'], varargs=None, keywords=None, defaults=(None, True)), ('document', '
f8f3df23c5633c614db781a91b81fb62
'))
paddle.fluid.DataFeeder.feed (ArgSpec(args=['self', 'iterable'], varargs=None, keywords=None, defaults=None), ('document', '459e316301279dfd82001b46f0b8ffca'))
paddle.fluid.DataFeeder.feed_parallel (ArgSpec(args=['self', 'iterable', 'num_places'], varargs=None, keywords=None, defaults=(None,)), ('document', '543863d1f9d4853758adb613b8659e85'))
paddle.fluid.clip.ErrorClipByValue.__init__ (ArgSpec(args=['self', 'max', 'min'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
@@ -517,11 +518,11 @@ paddle.reader.compose (ArgSpec(args=[], varargs='readers', keywords='kwargs', de
paddle.reader.chain (ArgSpec(args=[], varargs='readers', keywords=None, defaults=None), ('document', 'd22c34e379a53901ae67a6bca7f4def4'))
paddle.reader.shuffle (ArgSpec(args=['reader', 'buf_size'], varargs=None, keywords=None, defaults=None), ('document', 'e42ea6fee23ce26b23cb142cd1d6522d'))
paddle.reader.firstn (ArgSpec(args=['reader', 'n'], varargs=None, keywords=None, defaults=None), ('document', 'c5bb8f7dd4f917f1569a368aab5b8aad'))
paddle.reader.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '
283bc0b8a0e26ae186b8b9bee4aec560
'))
paddle.reader.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '
9c804a42f8a4dbaa76b3c98e0ab7f796
'))
paddle.reader.PipeReader.__init__ (ArgSpec(args=['self', 'command', 'bufsize', 'file_type'], varargs=None, keywords=None, defaults=(8192, 'plain')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.reader.PipeReader.get_line (ArgSpec(args=['self', 'cut_lines', 'line_break'], varargs=None, keywords=None, defaults=(True, '\n')), ('document', '
5f80a7ed70052f01665e4c74acccfa69
'))
paddle.reader.PipeReader.get_line (ArgSpec(args=['self', 'cut_lines', 'line_break'], varargs=None, keywords=None, defaults=(True, '\n')), ('document', '
9621ae612e595b6c34eb3bb5f3eb1a45
'))
paddle.reader.multiprocess_reader (ArgSpec(args=['readers', 'use_pipe', 'queue_size'], varargs=None, keywords=None, defaults=(True, 1000)), ('document', '7d8b3a96e592107c893d5d51ce968ba0'))
paddle.reader.Fake.__init__ (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.reader.creator.np_array (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', '28d457fbc9a71efa4ac91a3be179cada'))
paddle.reader.creator.text_file (ArgSpec(args=['path'], varargs=None, keywords=None, defaults=None), ('document', '
44fe286ab6175a5464d3a961a68c266a
'))
paddle.reader.creator.recordio (ArgSpec(args=['paths', 'buf_size'], varargs=None, keywords=None, defaults=(100,)), ('document', '
11b3704ea42cfd537953387a7e58dae8
'))
paddle.reader.creator.text_file (ArgSpec(args=['path'], varargs=None, keywords=None, defaults=None), ('document', '
f45fcb7add066c8e042c6774fc7c3db2
'))
paddle.reader.creator.recordio (ArgSpec(args=['paths', 'buf_size'], varargs=None, keywords=None, defaults=(100,)), ('document', '
b4a94ee0e2cefb495619275c2f8c61d2
'))
paddle/fluid/framework/details/graph_test_base.h
浏览文件 @
27f7a726
...
...
@@ -68,11 +68,11 @@ class SplitOpMaker : public OpProtoAndCheckerMaker {
class
DummyVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
auto
type
=
block
->
Var
(
inputs
.
front
())
->
GetType
(
);
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetType
(
type
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
inputs
=
ctx
->
Input
(
"X"
);
auto
type
=
ctx
->
GetType
(
inputs
.
front
()
);
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
ctx
->
SetType
(
out_var_name
,
type
);
}
};
...
...
paddle/fluid/framework/details/op_registry.h
浏览文件 @
27f7a726
...
...
@@ -16,6 +16,8 @@ limitations under the License. */
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/grad_op_desc_maker.h"
#include "paddle/fluid/framework/inplace_op_inference.h"
...
...
@@ -127,9 +129,9 @@ struct OpInfoFiller<T, kGradOpDescMaker> {
template
<
typename
T
>
struct
OpInfoFiller
<
T
,
kVarTypeInference
>
{
void
operator
()(
const
char
*
op_type
,
OpInfo
*
info
)
const
{
info
->
infer_var_type_
=
[](
const
OpDesc
&
fwd_op
,
BlockDesc
*
block
)
{
info
->
infer_var_type_
=
[](
InferVarTypeContext
*
context
)
{
T
inference
;
inference
(
fwd_op
,
block
);
inference
(
context
);
};
}
};
...
...
paddle/fluid/framework/grad_op_desc_maker.h
浏览文件 @
27f7a726
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/op_desc.h"
...
...
@@ -55,11 +57,11 @@ class GradOpDescMakerBase {
std
::
back_inserter
(
ret_val
),
[
this
](
const
std
::
string
&
fwd_var_name
)
->
std
::
string
{
auto
g_name
=
GradVarName
(
fwd_var_name
);
if
(
no_grad_set_
.
count
(
g_name
))
{
return
kEmptyVarName
;
}
else
{
if
(
no_grad_set_
.
empty
()
||
!
no_grad_set_
.
count
(
g_name
))
{
(
*
this
->
grad_to_var_
)[
g_name
]
=
fwd_var_name
;
return
g_name
;
}
else
{
return
kEmptyVarName
;
}
});
if
(
!
drop_empty_grad
)
{
...
...
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
27f7a726
...
...
@@ -46,6 +46,8 @@ cc_library(fuse_pass_base SRCS fuse_pass_base.cc DEPS pass)
pass_library
(
graph_to_program_pass base
)
pass_library
(
graph_viz_pass base
)
pass_library
(
lock_free_optimize_pass base
)
pass_library
(
cpu_quantize_placement_pass base
)
pass_library
(
cpu_quantize_pass inference
)
pass_library
(
cpu_quantize_squash_pass inference
)
pass_library
(
fc_fuse_pass inference
)
pass_library
(
attention_lstm_fuse_pass inference
)
...
...
@@ -68,6 +70,7 @@ pass_library(conv_affine_channel_fuse_pass inference)
pass_library
(
transpose_flatten_concat_fuse_pass inference
)
pass_library
(
identity_scale_op_clean_pass base
)
pass_library
(
sync_batch_norm_pass base
)
pass_library
(
runtime_context_cache_pass base
)
# There may be many transpose-flatten structures in a model, and the output of
# these structures will be used as inputs to the concat Op. This pattern will
...
...
@@ -102,8 +105,12 @@ cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS g
cc_test
(
test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto
)
cc_test
(
test_seqpool_concat_fuse_pass SRCS seqpool_concat_fuse_pass_tester.cc DEPS seqpool_concat_fuse_pass framework_proto
)
cc_test
(
test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass
)
cc_test
(
test_sync_batch_norm_pass SRCS sync_batch_norm_pass_tester.cc DEPS sync_batch_norm_pass
)
cc_test
(
test_cpu_quantize_placement_pass SRCS cpu_quantize_placement_pass_tester.cc DEPS cpu_quantize_placement_pass
)
cc_test
(
test_cpu_quantize_pass SRCS cpu_quantize_pass_tester.cc DEPS cpu_quantize_pass naive_executor
)
cc_test
(
test_cpu_quantize_squash_pass SRCS cpu_quantize_squash_pass_tester.cc DEPS cpu_quantize_squash_pass naive_executor
)
if
(
NOT WIN32
)
cc_test
(
test_sync_batch_norm_pass SRCS sync_batch_norm_pass_tester.cc DEPS sync_batch_norm_pass
)
endif
()
if
(
WITH_MKLDNN
)
cc_test
(
test_depthwise_conv_mkldnn_pass SRCS mkldnn/depthwise_conv_mkldnn_pass_tester.cc DEPS depthwise_conv_mkldnn_pass
)
cc_test
(
test_conv_bias_mkldnn_fuse_pass SRCS mkldnn/conv_bias_mkldnn_fuse_pass_tester.cc DEPS conv_bias_mkldnn_fuse_pass naive_executor
)
...
...
paddle/fluid/framework/ir/cpu_quantize_pass.cc
0 → 100644
浏览文件 @
27f7a726
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/cpu_quantize_pass.h"
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
{
void
UnlinkNodes
(
ir
::
Node
*
a
,
ir
::
Node
*
b
)
{
a
->
outputs
.
erase
(
std
::
remove
(
a
->
outputs
.
begin
(),
a
->
outputs
.
end
(),
b
),
a
->
outputs
.
end
());
b
->
inputs
.
erase
(
std
::
remove
(
b
->
inputs
.
begin
(),
b
->
inputs
.
end
(),
a
),
b
->
inputs
.
end
());
}
}
// namespace
enum
{
U8_MAX
=
255
,
S8_MAX
=
127
};
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
double
,
Eigen
::
Dynamic
,
1
>>
;
using
string
::
PrettyLogDetail
;
void
CPUQuantizePass
::
QuantizeInput
(
Graph
*
g
,
Node
*
op
,
Node
*
input
,
std
::
string
input_name
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
)
const
{
unsigned
max
=
is_unsigned
?
U8_MAX
:
S8_MAX
;
float
scale
=
scale_to_one
*
max
;
// Create quantize output variable
VarDesc
quantize_out_desc
(
patterns
::
PDNodeName
(
"quantize"
,
"out"
));
auto
*
quantize_out_node
=
g
->
CreateVarNode
(
&
quantize_out_desc
);
// create a quantize op node
OpDesc
q_desc
;
q_desc
.
SetType
(
"quantize"
);
q_desc
.
SetInput
(
"Input"
,
std
::
vector
<
std
::
string
>
({
input
->
Name
()}));
q_desc
.
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
quantize_out_node
->
Name
()}));
q_desc
.
SetAttr
(
"Scale"
,
scale
);
q_desc
.
SetAttr
(
"is_negative_input"
,
!
is_unsigned
);
auto
quantize_op
=
g
->
CreateOpNode
(
&
q_desc
);
// OpDesc will be copied.
// update op's input
op
->
Op
()
->
SetInput
(
input_name
,
std
::
vector
<
std
::
string
>
({
quantize_out_node
->
Name
()}));
// link quantize op
UnlinkNodes
(
input
,
op
);
IR_NODE_LINK_TO
(
input
,
quantize_op
);
IR_NODE_LINK_TO
(
quantize_op
,
quantize_out_node
);
IR_NODE_LINK_TO
(
quantize_out_node
,
op
);
if
(
!
scale_attr_name
.
empty
())
op
->
Op
()
->
SetAttr
(
scale_attr_name
,
scale
);
}
void
CPUQuantizePass
::
DequantizeOutput
(
Graph
*
g
,
Node
*
op
,
Node
*
output
,
std
::
string
output_name
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
)
const
{
unsigned
max
=
is_unsigned
?
U8_MAX
:
S8_MAX
;
float
scale
=
scale_to_one
*
max
;
// Create dequantize input variable
VarDesc
dequantize_in_desc
(
patterns
::
PDNodeName
(
"dequantize"
,
"in"
));
auto
*
dequantize_in_node
=
g
->
CreateVarNode
(
&
dequantize_in_desc
);
// create a dequantize op node for output.
OpDesc
deq_desc
;
deq_desc
.
SetType
(
"dequantize"
);
deq_desc
.
SetInput
(
"Input"
,
std
::
vector
<
std
::
string
>
({
dequantize_in_node
->
Name
()}));
deq_desc
.
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
output
->
Name
()}));
deq_desc
.
SetAttr
(
"Scale"
,
scale
);
auto
dequantize_op
=
g
->
CreateOpNode
(
&
deq_desc
);
// OpDesc will be copied.
// update op's output
op
->
Op
()
->
SetOutput
(
output_name
,
std
::
vector
<
std
::
string
>
({
dequantize_in_node
->
Name
()}));
// link dequantize op
UnlinkNodes
(
op
,
output
);
IR_NODE_LINK_TO
(
op
,
dequantize_in_node
);
IR_NODE_LINK_TO
(
dequantize_in_node
,
dequantize_op
);
IR_NODE_LINK_TO
(
dequantize_op
,
output
);
if
(
!
scale_attr_name
.
empty
())
op
->
Op
()
->
SetAttr
(
scale_attr_name
,
scale
);
}
void
CPUQuantizePass
::
QuantizeConv
(
Graph
*
graph
,
bool
with_residual_data
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
ConvResidual
conv_pattern
{
pattern
,
name_scope_
};
conv_pattern
(
with_residual_data
);
int
quantize_conv_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"Quantize conv2d op"
;
GET_IR_NODE_FROM_SUBGRAPH
(
conv_op
,
conv_op
,
conv_pattern
);
auto
*
conv_op_desc
=
conv_op
->
Op
();
// skip if should not be quantized
if
(
!
conv_op_desc
->
HasAttr
(
"use_quantizer"
)
||
!
boost
::
get
<
bool
>
(
conv_op_desc
->
GetAttr
(
"use_quantizer"
)))
return
;
GET_IR_NODE_FROM_SUBGRAPH
(
conv_filter
,
conv_filter
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_input
,
conv_input
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_output
,
conv_output
,
conv_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
conv_input
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
conv_input
->
Name
()].
first
;
QuantizeInput
(
g
,
conv_op
,
conv_input
,
"Input"
,
input_scale
,
is_input_unsigned
,
"Scale_in"
);
auto
filter_scale_tensor
=
scales
[
conv_filter
->
Name
()].
second
;
EigenVectorArrayMap
eigen_tensor
{
filter_scale_tensor
.
data
<
double
>
(),
filter_scale_tensor
.
numel
(),
1
};
eigen_tensor
*=
static_cast
<
double
>
(
S8_MAX
);
std
::
vector
<
float
>
filter_scale
{
filter_scale_tensor
.
data
<
double
>
(),
filter_scale_tensor
.
data
<
double
>
()
+
filter_scale_tensor
.
numel
()};
conv_op
->
Op
()
->
SetAttr
(
"Scale_weights"
,
filter_scale
);
if
(
with_residual_data
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
conv_residual_data
,
conv_residual_data
,
conv_pattern
);
auto
residual_scale
=
scales
[
conv_residual_data
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_residual_unsigned
=
scales
[
conv_residual_data
->
Name
()].
first
;
QuantizeInput
(
g
,
conv_op
,
conv_residual_data
,
"ResidualData"
,
residual_scale
,
is_residual_unsigned
,
"Scale_in_eltwise"
);
}
auto
output_scale
=
scales
[
conv_output
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_output_unsigned
=
scales
[
conv_output
->
Name
()].
first
;
DequantizeOutput
(
g
,
conv_op
,
conv_output
,
"Output"
,
output_scale
,
is_output_unsigned
,
"Scale_out"
);
++
quantize_conv_count
;
};
gpd
(
graph
,
handler
);
AddStatis
(
quantize_conv_count
);
std
::
stringstream
msg_ss
;
msg_ss
<<
"--- quantized "
<<
quantize_conv_count
<<
" conv2d ops"
;
if
(
with_residual_data
)
msg_ss
<<
" with residual connection"
;
PrettyLogDetail
(
msg_ss
.
str
().
c_str
());
}
void
CPUQuantizePass
::
QuantizePool
(
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
Pool
pool_pattern
{
pattern
,
name_scope_
};
pool_pattern
();
int
quantize_pool_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"Quantize pool2d op"
;
GET_IR_NODE_FROM_SUBGRAPH
(
pool_op
,
pool_op
,
pool_pattern
);
auto
*
pool_op_desc
=
pool_op
->
Op
();
// skip if should not be quantized
if
(
!
pool_op_desc
->
HasAttr
(
"use_quantizer"
)
||
!
boost
::
get
<
bool
>
(
pool_op_desc
->
GetAttr
(
"use_quantizer"
)))
return
;
GET_IR_NODE_FROM_SUBGRAPH
(
pool_input
,
pool_input
,
pool_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
pool_output
,
pool_output
,
pool_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
pool_input
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
pool_input
->
Name
()].
first
;
QuantizeInput
(
g
,
pool_op
,
pool_input
,
"X"
,
input_scale
,
is_input_unsigned
);
auto
output_scale
=
scales
[
pool_output
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_output_unsigned
=
scales
[
pool_output
->
Name
()].
first
;
DequantizeOutput
(
g
,
pool_op
,
pool_output
,
"Out"
,
output_scale
,
is_output_unsigned
);
++
quantize_pool_count
;
};
gpd
(
graph
,
handler
);
AddStatis
(
quantize_pool_count
);
PrettyLogDetail
(
"--- quantized %d pool2d ops"
,
quantize_pool_count
);
}
std
::
unique_ptr
<
ir
::
Graph
>
CPUQuantizePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
VLOG
(
3
)
<<
"Quantizing the graph."
;
PADDLE_ENFORCE
(
graph
.
get
());
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
PADDLE_ENFORCE
(
param_scope
());
QuantizeConv
(
graph
.
get
(),
true
/* with_residual_data */
);
QuantizeConv
(
graph
.
get
());
QuantizePool
(
graph
.
get
());
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
cpu_quantize_pass
,
paddle
::
framework
::
ir
::
CPUQuantizePass
)
.
RequirePassAttr
(
"quant_var_scales"
);
paddle/fluid/framework/ir/cpu_quantize_pass.h
0 → 100644
浏览文件 @
27f7a726
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* Map variable name to tensor of scaling factors scaling it to MAX=1.0.
* bool denotes whether quantization of the variable should be done to unsigned
* type.
*/
using
VarQuantScale
=
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
bool
,
LoDTensor
>>
;
/*
* Quantize all supported operators.
*/
class
CPUQuantizePass
:
public
FusePassBase
{
public:
virtual
~
CPUQuantizePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
void
QuantizeConv
(
Graph
*
graph
,
bool
with_residual_data
=
false
)
const
;
void
QuantizePool
(
Graph
*
graph
)
const
;
void
QuantizeInput
(
Graph
*
g
,
Node
*
op
,
Node
*
input
,
std
::
string
input_name
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
=
""
)
const
;
void
DequantizeOutput
(
Graph
*
g
,
Node
*
op
,
Node
*
output
,
std
::
string
output_name
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
=
""
)
const
;
const
std
::
string
name_scope_
{
"quantize"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/cpu_quantize_pass_tester.cc
0 → 100644
浏览文件 @
27f7a726
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/cpu_quantize_pass.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
vector
<
std
::
string
>&
outputs
,
bool
use_mkldnn
,
bool
use_quantizer
=
false
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
type
);
op
->
SetAttr
(
"use_mkldnn"
,
use_mkldnn
);
op
->
SetAttr
(
"name"
,
name
);
if
(
type
==
"conv2d"
)
{
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
op
->
SetInput
(
"Filter"
,
{
inputs
[
1
]});
if
(
inputs
.
size
()
>
2
)
op
->
SetInput
(
"Bias"
,
{
inputs
[
2
]});
else
op
->
SetInput
(
"Bias"
,
{});
if
(
inputs
.
size
()
>
3
)
{
op
->
SetInput
(
"ResidualData"
,
{
inputs
[
3
]});
op
->
SetAttr
(
"fuse_residual_connection"
,
true
);
}
else
{
op
->
SetInput
(
"ResidualData"
,
{});
op
->
SetAttr
(
"fuse_residual_connection"
,
false
);
}
op
->
SetOutput
(
"Output"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"use_quantizer"
,
use_quantizer
);
op
->
SetAttr
(
"Scale_in"
,
1.0
f
);
op
->
SetAttr
(
"Scale_out"
,
1.0
f
);
op
->
SetAttr
(
"Scale_weights"
,
std
::
vector
<
float
>
{
1.0
f
});
}
else
if
(
type
==
"pool2d"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"use_quantizer"
,
use_quantizer
);
}
else
if
(
type
==
"dropout"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
}
else
if
(
type
==
"fc"
)
{
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
if
(
inputs
.
size
()
>
1
)
op
->
SetInput
(
"W"
,
{
inputs
[
1
]});
if
(
inputs
.
size
()
>
2
)
op
->
SetInput
(
"Bias"
,
{
inputs
[
2
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
}
}
static
const
std
::
initializer_list
<
std
::
string
>
variable_names
{
"a"
,
"w1"
,
"c"
,
"d"
,
"w2"
,
"e"
,
"f"
,
"g"
,
"h"
,
"w3"
,
"b1"
,
"i"
,
"j"
,
"w4"
,
"b2"
};
// (a,w1)->Conv1->c and c->Pool1->d
//
// (d,w2)->Conv2->e and e->Pool2->f
//
// d->Dropout1->g and g->Fc1->h and (h,w3,b1,i)->Conv3->j
//
// (d,w4, b2)->Conv4->i
ProgramDesc
BuildProgramDesc
(
bool
use_mkldnn
,
bool
use_quantizer
)
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names
)
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
if
(
v
.
find
(
"w"
)
==
0
||
v
.
find
(
"b"
)
==
0
)
{
var
->
SetPersistable
(
true
);
}
}
SetOp
(
&
prog
,
"conv2d"
,
"Conv1"
,
{
"a"
,
"w1"
},
{
"c"
},
use_mkldnn
,
use_quantizer
);
SetOp
(
&
prog
,
"pool2d"
,
"Pool1"
,
{
"c"
},
{
"d"
},
use_mkldnn
,
use_quantizer
);
SetOp
(
&
prog
,
"conv2d"
,
"Conv2"
,
{
"d"
,
"w2"
},
{
"e"
},
use_mkldnn
,
use_quantizer
);
SetOp
(
&
prog
,
"pool2d"
,
"Pool2"
,
{
"e"
},
{
"f"
},
use_mkldnn
,
use_quantizer
);
SetOp
(
&
prog
,
"dropout"
,
"Dropout1"
,
{
"d"
},
{
"g"
},
use_mkldnn
);
SetOp
(
&
prog
,
"fc"
,
"Fc1"
,
{
"g"
},
{
"h"
},
use_mkldnn
);
SetOp
(
&
prog
,
"conv2d"
,
"Conv3"
,
{
"h"
,
"w3"
,
"b1"
,
"i"
},
{
"j"
},
use_mkldnn
,
use_quantizer
);
SetOp
(
&
prog
,
"conv2d"
,
"Conv4"
,
{
"c"
,
"w4"
,
"b2"
},
{
"i"
},
use_mkldnn
,
use_quantizer
);
return
prog
;
}
void
InitTensorHolder
(
Scope
*
scope
,
const
paddle
::
platform
::
Place
&
place
,
const
char
*
var_name
)
{
auto
x
=
scope
->
Var
(
var_name
);
auto
tensor
=
x
->
GetMutable
<
LoDTensor
>
();
tensor
->
mutable_data
(
place
,
proto
::
VarType
::
FP32
,
::
paddle
::
memory
::
Allocator
::
kDefault
,
1
);
}
void
MainTest
(
const
ProgramDesc
&
prog
,
int
conv_count
,
int
pool_count
,
int
quant_count
,
int
dequant_count
,
int
added_nodes_count
,
float
scale
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
// Init scope, as it is used in pass
auto
place
=
paddle
::
platform
::
CPUPlace
();
NaiveExecutor
exe
{
place
};
Scope
scope
;
exe
.
CreateVariables
(
prog
,
0
,
true
,
&
scope
);
auto
*
scales
=
new
VarQuantScale
();
for
(
auto
&
v
:
variable_names
)
{
InitTensorHolder
(
&
scope
,
place
,
v
.
c_str
());
LoDTensor
tensor
;
tensor
.
Resize
({
1
});
auto
*
ptr
=
tensor
.
mutable_data
<
double
>
(
place
);
ptr
[
0
]
=
2.0
;
(
*
scales
)[
v
]
=
std
::
make_pair
(
false
,
std
::
move
(
tensor
));
}
graph
->
Set
(
kParamScopeAttr
,
new
framework
::
Scope
*
(
&
scope
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"cpu_quantize_pass"
);
pass
->
Set
(
"quant_var_scales"
,
scales
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
int
quantize_nodes_count
=
0
;
int
dequantize_nodes_count
=
0
;
int
conv2d_nodes_count
=
0
;
int
pool2d_nodes_count
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
auto
*
op
=
node
->
Op
();
if
(
op
->
Type
()
==
"conv2d"
)
{
conv2d_nodes_count
++
;
auto
op_name
=
boost
::
get
<
std
::
string
>
(
op
->
GetAttr
(
"name"
));
EXPECT_EQ
(
boost
::
get
<
float
>
(
op
->
GetAttr
(
"Scale_in"
)),
scale
)
<<
"Scale_in for node '"
+
op_name
+
"'."
;
EXPECT_EQ
(
boost
::
get
<
float
>
(
op
->
GetAttr
(
"Scale_out"
)),
scale
)
<<
"Scale_out for node '"
+
op_name
+
"'."
;
EXPECT_EQ
(
boost
::
get
<
std
::
vector
<
float
>>
(
op
->
GetAttr
(
"Scale_weights"
))[
0
],
scale
)
<<
"Scale_weights for node '"
+
op_name
+
"'."
;
}
else
if
(
op
->
Type
()
==
"pool2d"
)
{
pool2d_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"quantize"
)
{
quantize_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"dequantize"
)
{
dequantize_nodes_count
++
;
}
}
}
EXPECT_EQ
(
conv2d_nodes_count
,
conv_count
);
EXPECT_EQ
(
pool2d_nodes_count
,
pool_count
);
EXPECT_EQ
(
quantize_nodes_count
,
quant_count
);
EXPECT_EQ
(
dequantize_nodes_count
,
dequant_count
);
EXPECT_EQ
(
original_nodes_num
+
added_nodes_count
,
current_nodes_num
);
}
TEST
(
CpuQuantizePass
,
quantize
)
{
bool
use_mkldnn
=
true
;
bool
use_quantizer
=
true
;
// (a->QUANT1->IN1,w1)->Conv1->OUT1->DEQUANT1->c and
// c->QUANT2->IN2->Pool1->OUT2->DEQUANT2->d
//
// (d->QUANT3->IN3,w2)->Conv2->OUT3->DEQUANT3->e and
// e->QUANT4->IN4->Pool2->OUT4->DEQUANT4->f
//
// d->Dropout1->g and g->Fc1->h and
// (h->QUANT5->IN5,w3,b1,i->QUANT6->IN6)->Conv3->OUT5->DEQUANT5->j
//
// (d->QUANT7->IN7,w4, b2)->Conv4->DEQUANT6->OUT6->i
// Insert nodes: 7 Quant + 7 IN + 6 OUT + 6 DEQUANT
int
added_nodes
=
7
+
7
+
6
+
6
;
MainTest
(
BuildProgramDesc
(
use_mkldnn
,
use_quantizer
),
4
,
2
,
7
,
6
,
added_nodes
,
2.0
f
*
127
);
}
TEST
(
CpuQuantizePass
,
do_not_quantize
)
{
bool
use_mkldnn
=
true
;
bool
use_quantizer
=
false
;
int
added_nodes
=
0
;
MainTest
(
BuildProgramDesc
(
use_mkldnn
,
use_quantizer
),
4
,
2
,
0
,
0
,
added_nodes
,
1.0
f
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
cpu_quantize_pass
);
paddle/fluid/framework/ir/cpu_quantize_placement_pass.cc
0 → 100644
浏览文件 @
27f7a726
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/cpu_quantize_placement_pass.h"
#include <string>
#include <unordered_set>
namespace
paddle
{
namespace
framework
{
namespace
ir
{
std
::
unique_ptr
<
ir
::
Graph
>
CPUQuantizePlacementPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
VLOG
(
3
)
<<
"Marks operators which are to be quantized."
;
const
auto
&
excluded_ids_list
=
Get
<
std
::
unordered_set
<
int
>>
(
"quantize_excluded_op_ids"
);
const
auto
&
op_types_list
=
Get
<
std
::
unordered_set
<
std
::
string
>>
(
"quantize_enabled_op_types"
);
for
(
const
Node
*
n
:
graph
->
Nodes
())
{
if
(
n
->
IsOp
())
{
if
(
std
::
find
(
excluded_ids_list
.
begin
(),
excluded_ids_list
.
end
(),
n
->
id
())
!=
excluded_ids_list
.
end
())
continue
;
auto
*
op
=
n
->
Op
();
if
(
op
->
HasAttr
(
"use_quantizer"
)
||
op
->
HasProtoAttr
(
"use_quantizer"
))
{
if
(
op_types_list
.
empty
())
{
op
->
SetAttr
(
"use_quantizer"
,
true
);
}
else
if
(
std
::
find
(
op_types_list
.
begin
(),
op_types_list
.
end
(),
n
->
Name
())
!=
op_types_list
.
end
())
{
op
->
SetAttr
(
"use_quantizer"
,
true
);
}
}
}
}
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
cpu_quantize_placement_pass
,
paddle
::
framework
::
ir
::
CPUQuantizePlacementPass
)
// a vector of operator type names to be quantized ("conv2d" etc.)
.
RequirePassAttr
(
"quantize_enabled_op_types"
)
// a vector of operator ids that are to be excluded from quantization
.
RequirePassAttr
(
"quantize_excluded_op_ids"
);
paddle/fluid/framework/ir/cpu_quantize_placement_pass.h
0 → 100644
浏览文件 @
27f7a726
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* Specifies which operators should be quantized.
*/
class
CPUQuantizePlacementPass
:
public
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/cpu_quantize_placement_pass_tester.cc
0 → 100644
浏览文件 @
27f7a726
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/cpu_quantize_placement_pass.h"
#include <gtest/gtest.h>
#include <boost/logic/tribool.hpp>
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
vector
<
std
::
string
>&
outputs
,
boost
::
tribool
use_quantizer
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
type
);
if
(
!
boost
::
indeterminate
(
use_quantizer
))
op
->
SetAttr
(
"use_quantizer"
,
use_quantizer
);
if
(
type
==
"conv2d"
)
{
op
->
SetAttr
(
"name"
,
name
);
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
op
->
SetInput
(
"Filter"
,
{
inputs
[
1
]});
op
->
SetInput
(
"Bias"
,
{
inputs
[
2
]});
}
else
if
(
type
==
"relu"
)
{
op
->
SetInput
(
"X"
,
inputs
);
}
else
if
(
type
==
"concat"
)
{
op
->
SetAttr
(
"axis"
,
1
);
op
->
SetInput
(
"X"
,
{
inputs
[
0
],
inputs
[
1
]});
}
else
if
(
type
==
"pool2d"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
}
else
{
FAIL
()
<<
"Unexpected operator type."
;
}
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
}
// operator use_quantizer
// ---------------------------------------
// (a,b)->concat->c none
// (c,weights,bias)->conv->f false
// f->relu->g none
// g->pool->h false
// (h,weights2,bias2)->conv->k false
// k->pool->l false
ProgramDesc
BuildProgramDesc
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
std
::
vector
<
std
::
string
>
({
"a"
,
"b"
,
"c"
,
"weights"
,
"bias"
,
"f"
,
"g"
,
"h"
,
"weights2"
,
"bias2"
,
"k"
,
"l"
}))
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
var
->
SetType
(
proto
::
VarType
::
SELECTED_ROWS
);
if
(
v
==
"weights"
||
v
==
"bias"
)
{
var
->
SetPersistable
(
true
);
}
}
SetOp
(
&
prog
,
"concat"
,
"concat1"
,
{
"a"
,
"b"
},
{
"c"
},
boost
::
indeterminate
);
SetOp
(
&
prog
,
"conv2d"
,
"conv1"
,
{
"c"
,
"weights"
,
"bias"
},
{
"f"
},
false
);
SetOp
(
&
prog
,
"relu"
,
"relu1"
,
{
"f"
},
{
"g"
},
boost
::
indeterminate
);
SetOp
(
&
prog
,
"pool2d"
,
"pool1"
,
{
"g"
},
{
"h"
},
false
);
SetOp
(
&
prog
,
"conv2d"
,
"conv2"
,
{
"h"
,
"weights2"
,
"bias2"
},
{
"k"
},
false
);
SetOp
(
&
prog
,
"pool2d"
,
"pool2"
,
{
"k"
},
{
"l"
},
false
);
return
prog
;
}
void
MainTest
(
std
::
initializer_list
<
std
::
string
>
quantize_enabled_op_types
,
std
::
initializer_list
<
int
>
quantize_excluded_op_ids
,
unsigned
expected_use_quantizer_true_count
)
{
auto
prog
=
BuildProgramDesc
();
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"cpu_quantize_placement_pass"
);
pass
->
Set
(
"quantize_enabled_op_types"
,
new
std
::
unordered_set
<
std
::
string
>
(
quantize_enabled_op_types
));
pass
->
Set
(
"quantize_excluded_op_ids"
,
new
std
::
unordered_set
<
int
>
(
quantize_excluded_op_ids
));
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
unsigned
use_quantizer_true_count
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
auto
*
op
=
node
->
Op
();
if
(
op
->
HasAttr
(
"use_quantizer"
)
&&
boost
::
get
<
bool
>
(
op
->
GetAttr
(
"use_quantizer"
)))
{
++
use_quantizer_true_count
;
}
}
}
EXPECT_EQ
(
use_quantizer_true_count
,
expected_use_quantizer_true_count
);
}
TEST
(
QuantizerPlacementPass
,
enabled_pool
)
{
MainTest
({
"pool2d"
},
{},
2
);
}
TEST
(
QuantizerPlacementPass
,
enabled_conv_excluded_one
)
{
MainTest
({
"conv2d"
},
{
4
},
1
);
}
TEST
(
QuantizerPlacementPass
,
excluded_none
)
{
// 2 conv + 2 pool
MainTest
({},
{},
4
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
cpu_quantize_placement_pass
);
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
27f7a726
...
...
@@ -90,7 +90,8 @@ void GraphPatternDetector::operator()(Graph *graph,
ValidateByNodeRole
(
&
subgraphs
);
if
(
subgraphs
.
empty
())
return
;
PrettyLogEndl
(
Style
::
detail
(),
"--- detect %d subgraphs"
,
subgraphs
.
size
());
PrettyLogEndl
(
Style
::
detail
(),
"--- detected %d subgraphs"
,
subgraphs
.
size
());
int
id
=
0
;
for
(
auto
&
g
:
subgraphs
)
{
VLOG
(
3
)
<<
"optimizing #"
<<
id
++
<<
" subgraph"
;
...
...
@@ -1074,9 +1075,53 @@ PDNode *patterns::Conv::operator()() {
->
AsOutput
()
->
assert_is_op_output
(
"conv2d"
,
"Output"
);
conv_op
->
LinksFrom
({
input_var
,
filter_var
});
conv_op
->
LinksTo
({
output_var
});
conv_op
->
LinksFrom
({
input_var
,
filter_var
}).
LinksTo
({
output_var
});
return
output_var
;
}
PDNode
*
patterns
::
ConvResidual
::
operator
()(
bool
with_residual_data
)
{
auto
conv_op
=
pattern
->
NewNode
(
conv_op_repr
())
->
assert_is_op
(
"conv2d"
);
if
(
!
with_residual_data
)
conv_op
->
assert_op_attr
(
"fuse_residual_connection"
,
false
);
auto
input_var
=
pattern
->
NewNode
(
conv_input_repr
())
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
auto
filter_var
=
pattern
->
NewNode
(
conv_filter_repr
())
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Filter"
);
auto
output_var
=
pattern
->
NewNode
(
conv_output_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"conv2d"
,
"Output"
);
std
::
vector
<
PDNode
*>
links_from
{
input_var
,
filter_var
};
if
(
with_residual_data
)
{
auto
res_conn_var
=
pattern
->
NewNode
(
conv_residual_data_repr
())
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"ResidualData"
);
links_from
.
push_back
(
res_conn_var
);
}
conv_op
->
LinksFrom
(
links_from
).
LinksTo
({
output_var
});
return
output_var
;
}
PDNode
*
patterns
::
Pool
::
operator
()()
{
auto
pool_op
=
pattern
->
NewNode
(
pool_op_repr
())
->
assert_is_op
(
"pool2d"
);
auto
input_var
=
pattern
->
NewNode
(
pool_input_repr
())
->
AsInput
()
->
assert_is_op_input
(
"pool2d"
,
"X"
);
auto
output_var
=
pattern
->
NewNode
(
pool_output_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"pool2d"
,
"Out"
);
pool_op
->
LinksFrom
({
input_var
}).
LinksTo
({
output_var
});
return
output_var
;
}
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
27f7a726
...
...
@@ -659,6 +659,35 @@ struct Conv : public PatternBase {
PATTERN_DECL_NODE
(
conv_output
);
};
// Convolution op with residual data
struct
ConvResidual
:
public
PatternBase
{
ConvResidual
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"conv_residual"
)
{}
PDNode
*
operator
()(
bool
with_residual_data
);
PATTERN_DECL_NODE
(
conv_op
);
PATTERN_DECL_NODE
(
conv_input
);
PATTERN_DECL_NODE
(
conv_filter
);
PATTERN_DECL_NODE
(
conv_residual_data
);
PATTERN_DECL_NODE
(
conv_output
);
};
// Pool op
// Forward pass for pooling.
// pool_input is the input.
// pool_output is a result of the operator.
struct
Pool
:
public
PatternBase
{
Pool
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"pooling"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
pool_op
);
PATTERN_DECL_NODE
(
pool_input
);
PATTERN_DECL_NODE
(
pool_output
);
};
// ElementwiseAdd used in residual connections.
// y_var is used and convolution output.
// The operator is removed, when residual
...
...
paddle/fluid/framework/ir/graph_test.cc
浏览文件 @
27f7a726
...
...
@@ -43,20 +43,20 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
class
SumOpVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
void
operator
()(
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
inputs
=
ctx
->
Input
(
"X"
);
auto
default_var_type
=
proto
::
VarType
::
SELECTED_ROWS
;
bool
any_input_is_lod_tensor
=
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
block
](
const
std
::
string
&
name
)
{
return
block
->
Var
(
name
)
->
GetType
(
)
==
proto
::
VarType
::
LOD_TENSOR
;
inputs
.
begin
(),
inputs
.
end
(),
[
&
ctx
](
const
std
::
string
&
name
)
{
return
ctx
->
GetType
(
name
)
==
proto
::
VarType
::
LOD_TENSOR
;
});
if
(
any_input_is_lod_tensor
)
{
default_var_type
=
proto
::
VarType
::
LOD_TENSOR
;
}
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetType
(
default_var_type
);
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
ctx
->
SetType
(
out_var_name
,
default_var_type
);
}
};
...
...
@@ -71,7 +71,7 @@ class DummyOpMaker : public OpProtoAndCheckerMaker {
class
DummyOpVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
}
// namespace framework
}
// namespace paddle
...
...
paddle/fluid/framework/ir/runtime_context_cache_pass.cc
0 → 100644
浏览文件 @
27f7a726
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/runtime_context_cache_pass.h"
#include <memory>
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
std
::
unique_ptr
<
ir
::
Graph
>
RuntimeContextCachePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
VLOG
(
3
)
<<
"Applies Runtime Context Cache strategy."
;
for
(
const
Node
*
n
:
graph
->
Nodes
())
{
if
(
n
->
IsOp
())
{
n
->
Op
()
->
SetAttr
(
kEnableCacheRuntimeContext
,
true
);
}
}
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
runtime_context_cache_pass
,
paddle
::
framework
::
ir
::
RuntimeContextCachePass
);
paddle/fluid/framework/ir/runtime_context_cache_pass.h
0 → 100644
浏览文件 @
27f7a726
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
RuntimeContextCachePass
:
public
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/op_desc.cc
浏览文件 @
27f7a726
...
...
@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -677,7 +678,8 @@ void OpDesc::InferVarType(BlockDesc *block) const {
// var type inference. Hence, we don't do any "default" setting here.
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
this
->
Type
());
if
(
info
.
infer_var_type_
)
{
info
.
infer_var_type_
(
*
this
,
block
);
InferVarTypeContext
context
(
this
,
block
);
info
.
infer_var_type_
(
&
context
);
}
}
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
27f7a726
...
...
@@ -874,9 +874,23 @@ std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
return
kernel_configs
;
}
RuntimeContext
*
OperatorWithKernel
::
GetRuntimeContext
(
const
Scope
&
scope
)
const
{
if
(
!
HasAttr
(
kEnableCacheRuntimeContext
))
{
return
new
RuntimeContext
(
Inputs
(),
Outputs
(),
scope
);
}
else
{
const
Scope
*
cur_scope
=
&
scope
;
if
(
!
runtime_ctx_
||
pre_scope_
!=
cur_scope
)
{
runtime_ctx_
.
reset
(
new
RuntimeContext
(
Inputs
(),
Outputs
(),
scope
));
pre_scope_
=
cur_scope
;
}
return
runtime_ctx_
.
get
();
}
}
void
OperatorWithKernel
::
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
RuntimeContext
ctx
(
Inputs
(),
Outputs
(),
scope
);
auto
runtime_ctx
=
GetRuntimeContext
(
scope
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
...
...
@@ -891,7 +905,7 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
auto
expected_kernel_key
=
this
->
GetExpectedKernelType
(
ExecutionContext
(
*
this
,
scope
,
*
dev_ctx
,
ctx
,
nullptr
));
ExecutionContext
(
*
this
,
scope
,
*
dev_ctx
,
*
runtime_
ctx
,
nullptr
));
VLOG
(
3
)
<<
"expected_kernel_key:"
<<
expected_kernel_key
;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
...
...
@@ -915,8 +929,8 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
// do data transformScope &transfer_scope;
std
::
vector
<
std
::
string
>
transfered_inplace_vars
;
auto
*
transfer_scope
=
PrepareData
(
scope
,
expected_kernel_key
,
&
transfered_inplace_vars
,
&
ctx
);
auto
*
transfer_scope
=
PrepareData
(
scope
,
expected_kernel_key
,
&
transfered_inplace_vars
,
runtime_
ctx
);
// exec scope is the scope that kernel actually executed on.
const
Scope
&
exec_scope
=
...
...
@@ -927,13 +941,13 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
}
if
(
!
HasAttr
(
kAllKernelsMustComputeRuntimeShape
))
{
RuntimeInferShapeContext
infer_shape_ctx
(
*
this
,
exec_scope
,
ctx
);
RuntimeInferShapeContext
infer_shape_ctx
(
*
this
,
exec_scope
,
*
runtime_
ctx
);
this
->
InferShape
(
&
infer_shape_ctx
);
}
// TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
// not Scope. Imperative mode only pass inputs and get outputs.
kernel_iter
->
second
(
ExecutionContext
(
*
this
,
exec_scope
,
*
dev_ctx
,
ctx
,
kernel_configs
));
kernel_iter
->
second
(
ExecutionContext
(
*
this
,
exec_scope
,
*
dev_ctx
,
*
runtime_
ctx
,
kernel_configs
));
if
(
!
transfered_inplace_vars
.
empty
())
{
// there is inplace variable has been transfered.
...
...
paddle/fluid/framework/operator.h
浏览文件 @
27f7a726
...
...
@@ -62,6 +62,14 @@ constexpr char kZeroVarSuffix[] = "@ZERO";
/// Variables with this suffix are the new Gradient.
constexpr
char
kNewGradSuffix
[]
=
"@NEWGRAD@"
;
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr
char
kEnableCacheRuntimeContext
[]
=
"@ENABLE_CACHE_RUNTIME_CONTEXT@"
;
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
...
...
@@ -456,6 +464,7 @@ class OperatorWithKernel : public OperatorBase {
// same.
proto
::
VarType
::
Type
IndicateDataType
(
const
ExecutionContext
&
ctx
)
const
;
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
final
;
RuntimeContext
*
GetRuntimeContext
(
const
Scope
&
scope
)
const
;
/**
* Transfer data from scope to a transfered scope. If there is no data need to
...
...
@@ -474,6 +483,8 @@ class OperatorWithKernel : public OperatorBase {
protected:
mutable
OpKernelConfigsMap
kernel_configs_map_
;
mutable
std
::
unique_ptr
<
RuntimeContext
>
runtime_ctx_
;
mutable
const
Scope
*
pre_scope_
=
nullptr
;
};
extern
bool
OpSupportGPU
(
const
std
::
string
&
op_type
);
...
...
paddle/fluid/framework/tensor_util.cc
浏览文件 @
27f7a726
...
...
@@ -44,6 +44,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
<<
dst_place
;
return
;
}
#ifdef PADDLE_WITH_MKLDNN
if
(
src
.
layout
()
==
DataLayout
::
kMKLDNN
)
{
dst
->
set_mkldnn_prim_desc
(
src
.
get_mkldnn_prim_desc
());
}
#endif
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
dst_place
),
dst_ptr
,
boost
::
get
<
platform
::
CPUPlace
>
(
src_place
),
src_ptr
,
size
);
}
...
...
paddle/fluid/framework/type_defs.h
浏览文件 @
27f7a726
...
...
@@ -27,6 +27,7 @@ namespace framework {
class
OperatorBase
;
class
OpDesc
;
class
InferShapeContext
;
class
InferVarTypeContext
;
class
BlockDesc
;
class
Variable
;
...
...
@@ -53,7 +54,7 @@ using GradOpMakerFN = std::function<std::vector<std::unique_ptr<OpDesc>>(
const
std
::
vector
<
BlockDesc
*>&
grad_block
)
>
;
using
InferVarTypeFN
=
std
::
function
<
void
(
const
OpDesc
&
/*op_desc*/
,
BlockDesc
*
/*block
*/
)
>
;
std
::
function
<
void
(
framework
::
InferVarTypeContext
*
/*context
*/
)
>
;
using
InferShapeFN
=
std
::
function
<
void
(
InferShapeContext
*
)
>
;
...
...
paddle/fluid/framework/var_type_inference.h
浏览文件 @
27f7a726
...
...
@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/type_defs.h"
...
...
@@ -21,26 +23,123 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
class
OpDesc
;
class
BlockDesc
;
// default infer var type context
class
InferVarTypeContext
{
public:
InferVarTypeContext
(
const
OpDesc
*
op
,
BlockDesc
*
block
)
:
op_
(
op
),
block_
(
block
)
{}
virtual
~
InferVarTypeContext
()
{}
virtual
Attribute
GetAttr
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
op_
);
return
op_
->
GetAttr
(
name
);
}
virtual
bool
HasVar
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindVarRecursive
(
name
)
!=
nullptr
;
}
virtual
bool
HasInput
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
op_
);
return
op_
->
Inputs
().
count
(
name
)
>
0
;
}
virtual
bool
HasOutput
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
op_
);
return
op_
->
Outputs
().
count
(
name
)
>
0
;
}
virtual
const
std
::
vector
<
std
::
string
>&
Input
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
op_
);
return
op_
->
Input
(
name
);
}
virtual
const
std
::
vector
<
std
::
string
>&
Output
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
op_
);
return
op_
->
Output
(
name
);
}
virtual
proto
::
VarType
::
Type
GetType
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindRecursiveOrCreateVar
(
name
).
GetType
();
}
virtual
void
SetType
(
const
std
::
string
&
name
,
proto
::
VarType
::
Type
type
)
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
block_
->
FindRecursiveOrCreateVar
(
name
).
SetType
(
type
);
}
virtual
proto
::
VarType
::
Type
GetDataType
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindRecursiveOrCreateVar
(
name
).
GetDataType
();
}
virtual
void
SetDataType
(
const
std
::
string
&
name
,
proto
::
VarType
::
Type
type
)
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
block_
->
FindRecursiveOrCreateVar
(
name
).
SetDataType
(
type
);
}
virtual
std
::
vector
<
proto
::
VarType
::
Type
>
GetDataTypes
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindRecursiveOrCreateVar
(
name
).
GetDataTypes
();
}
virtual
void
SetDataTypes
(
const
std
::
string
&
name
,
const
std
::
vector
<
proto
::
VarType
::
Type
>&
multiple_data_type
)
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
block_
->
FindRecursiveOrCreateVar
(
name
).
SetDataTypes
(
multiple_data_type
);
}
virtual
std
::
vector
<
int64_t
>
GetShape
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindRecursiveOrCreateVar
(
name
).
GetShape
();
}
virtual
void
SetShape
(
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>&
dims
)
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
block_
->
FindRecursiveOrCreateVar
(
name
).
SetShape
(
dims
);
}
virtual
int32_t
GetLoDLevel
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindRecursiveOrCreateVar
(
name
).
GetLoDLevel
();
}
virtual
void
SetLoDLevel
(
const
std
::
string
&
name
,
int32_t
lod_level
)
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
block_
->
FindRecursiveOrCreateVar
(
name
).
SetLoDLevel
(
lod_level
);
}
protected:
const
OpDesc
*
op_
;
BlockDesc
*
block_
;
};
class
VarTypeInference
{
public:
virtual
~
VarTypeInference
()
{}
virtual
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
=
0
;
virtual
void
operator
()(
InferVarTypeContext
*
context
)
const
=
0
;
// NOLINT
};
class
PassInDtypeAndVarTypeToOutput
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
final
{
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
final
{
// NOLINT
auto
in_out_var_names
=
this
->
GetInputOutputWithSameType
();
for
(
auto
&
i_o_n
:
in_out_var_names
)
{
auto
&
x_name
=
op_desc
.
Input
(
i_o_n
.
first
).
at
(
0
);
auto
&
out_name
=
op_desc
.
Output
(
i_o_n
.
second
).
at
(
0
);
auto
&
x_name
=
ctx
->
Input
(
i_o_n
.
first
).
at
(
0
);
auto
&
out_name
=
ctx
->
Output
(
i_o_n
.
second
).
at
(
0
);
auto
&
x
=
block
->
FindRecursiveOrCreateVar
(
x_name
);
auto
&
out
=
block
->
FindRecursiveOrCreateVar
(
out_name
);
out
.
SetType
(
x
.
GetType
());
out
.
SetDataType
(
x
.
GetDataType
());
ctx
->
SetType
(
out_name
,
ctx
->
GetType
(
x_name
));
ctx
->
SetDataType
(
out_name
,
ctx
->
GetDataType
(
x_name
));
}
}
...
...
paddle/fluid/framework/var_type_inference_test.cc
浏览文件 @
27f7a726
...
...
@@ -44,20 +44,20 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
class
SumOpVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
inputs
=
ctx
->
Input
(
"X"
);
auto
default_var_type
=
proto
::
VarType
::
SELECTED_ROWS
;
bool
any_input_is_lod_tensor
=
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
block
](
const
std
::
string
&
name
)
{
return
block
->
Var
(
name
)
->
GetType
(
)
==
proto
::
VarType
::
LOD_TENSOR
;
inputs
.
begin
(),
inputs
.
end
(),
[
&
ctx
](
const
std
::
string
&
name
)
{
return
ctx
->
GetType
(
name
)
==
proto
::
VarType
::
LOD_TENSOR
;
});
if
(
any_input_is_lod_tensor
)
{
default_var_type
=
proto
::
VarType
::
LOD_TENSOR
;
}
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetType
(
default_var_type
);
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
ctx
->
SetType
(
out_var_name
,
default_var_type
);
}
};
}
// namespace framework
...
...
paddle/fluid/imperative/CMakeLists.txt
浏览文件 @
27f7a726
...
...
@@ -2,4 +2,5 @@ if(WITH_PYTHON)
cc_library
(
layer SRCS layer.cc DEPS proto_desc operator device_context blas pybind
)
cc_library
(
tracer SRCS tracer.cc DEPS proto_desc device_context pybind
)
cc_library
(
engine SRCS engine.cc
)
cc_library
(
imperative_profiler SRCS profiler.cc
)
endif
()
paddle/fluid/imperative/layer.cc
浏览文件 @
27f7a726
...
...
@@ -214,13 +214,11 @@ framework::LoDTensor& VarBase::GradValue() {
}
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
()
{
if
(
grad_op_descs_
.
empty
()
&&
backward_id_
<=
0
)
{
VLOG
(
3
)
<<
"op with no grad: "
<<
Type
();
return
{};
}
PADDLE_ENFORCE
(
!
grad_op_descs_
.
empty
()
||
backward_id_
>
0
,
"%s has no backward implementation"
,
Type
());
VLOG
(
3
)
<<
"apply op grad: "
<<
Type
();
std
::
vector
<
framework
::
VariableValue
Map
>
tmp_grad_outputs
;
std
::
vector
<
VarBasePtr
Map
>
tmp_grad_outputs
;
if
(
backward_id_
>
0
)
{
VLOG
(
3
)
<<
"py_layer_grad"
;
tmp_grad_outputs
.
resize
(
1
);
...
...
@@ -239,30 +237,66 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
VLOG
(
3
)
<<
"apply grad op "
<<
grad_op_desc
->
Type
();
// Allocate tmp grad output variable
for
(
auto
it
:
grad_output_variable_map
)
{
for
(
const
auto
&
it
:
grad_output_variable_map
)
{
auto
&
outputs
=
tmp_grad_outputs
[
k
][
it
.
first
];
outputs
.
reserve
(
it
.
second
.
size
());
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
VarBase
*
origin_grad_var_base
=
it
.
second
[
i
];
// Allocate a new variable
Variable
*
tmp_var
=
new
framework
::
Variable
();
tmp_var
->
GetMutable
<
framework
::
LoDTensor
>
();
outputs
.
emplace_back
(
tmp_var
);
VarBase
*
tmp_grad_var_base
=
new
VarBase
(
string
::
Sprintf
(
"%s@IGrad"
,
origin_grad_var_base
->
Name
()),
origin_grad_var_base
->
DataType
(),
origin_grad_var_base
->
Dims
(),
place_
,
true
,
false
);
outputs
.
emplace_back
(
tmp_grad_var_base
);
}
}
// Run grad op
framework
::
RuntimeContext
ctx
(
grad_input_vars_
[
k
],
tmp_grad_outputs
[
k
]);
// No need to do compile time infer shape here.
// grad_op_desc_->InferShape(*block_);
// grad_op_desc->InferVarType(block_);
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc
);
auto
&
info
=
framework
::
OpInfoMap
::
Instance
().
Get
(
grad_op_desc
->
Type
());
if
(
info
.
infer_var_type_
)
{
RuntimeInferVarTypeContext
infer_var_type_ctx
(
&
grad_input_vars_
[
k
],
&
tmp_grad_outputs
[
k
],
&
attrs_
);
info
.
infer_var_type_
(
&
infer_var_type_ctx
);
}
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
opbase
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
// Run grad op
framework
::
VariableValueMap
grad_invars_map
;
framework
::
VariableValueMap
grad_outvars_map
;
for
(
const
auto
&
it
:
grad_input_vars_
[
k
])
{
auto
&
grad_invars
=
grad_invars_map
[
it
.
first
];
grad_invars
.
reserve
(
it
.
second
.
size
());
for
(
const
VarBase
*
grad_inp
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
grad_inp
->
var_
,
"op %s input %s nullptr"
,
grad_op_desc
->
Type
(),
grad_inp
->
Name
());
grad_invars
.
emplace_back
(
grad_inp
->
var_
);
}
}
for
(
const
auto
&
it
:
tmp_grad_outputs
[
k
])
{
auto
&
grad_outvars
=
grad_outvars_map
[
it
.
first
];
grad_outvars
.
reserve
(
it
.
second
.
size
());
for
(
VarBase
*
grad_out
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
grad_out
->
var_
,
"op %s output %s nullptr"
,
grad_op_desc
->
Type
(),
grad_out
->
Name
());
grad_outvars
.
emplace_back
(
grad_out
->
var_
);
}
}
framework
::
RuntimeContext
ctx
(
grad_invars_map
,
grad_outvars_map
);
framework
::
Scope
scope
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place_
);
p
.
op
.
RuntimeInferShape
(
scope
,
place_
,
ctx
);
...
...
@@ -273,14 +307,14 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
// Add tmp grad outputs to original grad vars
for
(
size_t
k
=
0
;
k
<
grad_output_vars_
.
size
();
++
k
)
{
for
(
auto
it
:
grad_output_vars_
[
k
])
{
for
(
const
auto
&
it
:
grad_output_vars_
[
k
])
{
auto
&
outputs
=
tmp_grad_outputs
[
k
][
it
.
first
];
auto
&
origin_outputs
=
it
.
second
;
const
auto
&
origin_outputs
=
it
.
second
;
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
origin_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
framework
::
Variable
*
grad
=
outputs
[
i
];
framework
::
Variable
*
orig_grad
=
origin_outputs
[
i
];
framework
::
Variable
*
grad
=
outputs
[
i
]
->
var_
;
framework
::
Variable
*
orig_grad
=
origin_outputs
[
i
]
->
var_
;
AddTo
(
grad
,
orig_grad
,
place_
);
delete
grad
;
}
...
...
@@ -328,28 +362,35 @@ void PyLayer::RegisterFunc(int func_id, const py::object& py_func) {
int
PyLayer
::
NumFuncs
()
{
return
py_funcs_
.
size
();
}
std
::
vector
<
Variable
*>
PyLayer
::
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
)
{
std
::
vector
<
framework
::
Variable
*>
invars
;
for
(
const
VarBase
*
in
:
inputs
)
{
invars
.
push_back
(
in
->
var_
);
}
std
::
vector
<
framework
::
Variable
*>
PyLayer
::
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
)
{
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
return
CallPythonFunc
(
py_funcs_
[
func_id
],
in
var
s
);
return
CallPythonFunc
(
py_funcs_
[
func_id
],
in
put
s
);
}
std
::
vector
<
Var
iable
*>
PyLayer
::
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
framework
::
Variabl
e
*>&
inputs
)
{
std
::
vector
<
Var
Base
*>
PyLayer
::
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
VarBas
e
*>&
inputs
)
{
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
return
CallPythonFunc
(
py_funcs_
[
func_id
],
inputs
);
auto
rets
=
CallPythonFunc
(
py_funcs_
[
func_id
],
inputs
);
std
::
vector
<
VarBase
*>
outs
;
outs
.
reserve
(
rets
.
size
());
for
(
size_t
i
=
0U
;
i
!=
rets
.
size
();
++
i
)
{
outs
.
emplace_back
(
new
VarBase
(
string
::
Sprintf
(
"%s_out_%d"
,
framework
::
GradVarName
(
PyLayer
::
kFwdOut
),
i
),
rets
[
i
],
nullptr
,
true
));
}
return
outs
;
}
std
::
vector
<
framework
::
Variable
*>
PyLayer
::
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
framework
::
Variabl
e
*>&
ins
)
{
const
py
::
object
&
callable
,
const
std
::
vector
<
VarBas
e
*>&
ins
)
{
py
::
gil_scoped_acquire
guard
;
py
::
tuple
in_args
(
ins
.
size
());
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
const
framework
::
LoDTensor
&
t
=
ins
[
i
]
->
Get
<
framework
::
LoDTensor
>
();
const
framework
::
LoDTensor
&
t
=
ins
[
i
]
->
var_
->
Get
<
framework
::
LoDTensor
>
();
in_args
[
i
]
=
t
.
IsInitialized
()
?
py
::
cast
(
t
)
:
py
::
cast
(
nullptr
);
}
VLOG
(
3
)
<<
"pyfunc in "
<<
py
::
len
(
in_args
);
...
...
@@ -359,6 +400,7 @@ std::vector<framework::Variable*> PyLayer::CallPythonFunc(
auto
ret_tuple
=
py
::
cast
<
py
::
tuple
>
(
ret
);
size_t
ret_num
=
py
::
len
(
ret_tuple
);
std
::
vector
<
framework
::
Variable
*>
outs
;
outs
.
reserve
(
ret_num
);
VLOG
(
3
)
<<
"pyfunc out "
<<
ret_num
;
for
(
size_t
i
=
0
;
i
<
ret_num
;
++
i
)
{
try
{
...
...
@@ -369,7 +411,7 @@ std::vector<framework::Variable*> PyLayer::CallPythonFunc(
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
ShareDataWith
(
*
py_out_tensor
);
tensor
->
set_lod
(
py_out_tensor
->
lod
());
outs
.
push
_back
(
var
);
outs
.
emplace
_back
(
var
);
}
catch
(
py
::
cast_error
&
)
{
PADDLE_THROW
(
"The %d-th output must be LoDTensor"
,
i
);
}
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
27f7a726
...
...
@@ -18,14 +18,16 @@
#include "paddle/fluid/framework/python_headers.h"
// clang-format on
#include <map> // NOLINT
#include <string> // NOLINT
#include <vector> // NOLINT
#include <memory> // NOLINT
#include <map> // NOLINT
#include <string> // NOLINT
#include <vector> // NOLINT
#include <memory> // NOLINT
#include <unordered_map> // NOLINT
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/operators/math/math_function.h"
...
...
@@ -135,13 +137,13 @@ class VarBase {
persistable
)
{}
private:
// TODO(minqiyang): need support SelectedRows
VarBase
(
const
std
::
string
&
name
,
framework
::
proto
::
VarType
::
Type
dtype
,
const
framework
::
DDim
&
shape
,
const
platform
::
Place
&
place
,
framework
::
Variable
*
var
,
VarBase
*
grad
,
bool
stop_gradient
,
bool
persistable
)
:
name_
(
name
),
dtype_
(
dtype
),
place_
(
place
),
type_
(
framework
::
proto
::
VarType
::
LOD_TENSOR
),
var_
(
var
),
grads_
(
grad
),
stop_gradient_
(
stop_gradient
),
...
...
@@ -151,10 +153,12 @@ class VarBase {
pre_op_out_idx_
(
-
1
)
{
if
(
!
var_
)
{
var_
=
new
framework
::
Variable
();
auto
tensor
=
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
shape
);
tensor
->
mutable_data
(
place_
,
dtype_
);
}
auto
tensor
=
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
shape
);
tensor
->
mutable_data
(
place
,
dtype
);
VLOG
(
10
)
<<
"create varbase: "
<<
name_
<<
" type: "
<<
dtype
<<
" place: "
<<
place
;
}
public:
...
...
@@ -184,7 +188,23 @@ class VarBase {
}
}
inline
framework
::
proto
::
VarType
::
Type
DType
()
const
{
return
dtype_
;
}
inline
framework
::
DDim
Dims
()
const
{
return
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
();
}
// data type. e.g.. FP32
inline
void
SetDataType
(
framework
::
proto
::
VarType
::
Type
type
)
{
auto
tensor
=
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
mutable_data
(
tensor
->
place
(),
type
);
}
inline
framework
::
proto
::
VarType
::
Type
DataType
()
const
{
auto
tensor
=
var_
->
Get
<
framework
::
LoDTensor
>
();
return
tensor
.
type
();
}
// tensor type. e.g.. LoDTensor
inline
void
SetType
(
framework
::
proto
::
VarType
::
Type
type
)
{
type_
=
type
;
}
inline
framework
::
proto
::
VarType
::
Type
Type
()
const
{
return
type_
;
}
inline
void
SetStopGradient
(
bool
stop_gradient
)
{
stop_gradient_
=
stop_gradient
;
...
...
@@ -238,7 +258,7 @@ class VarBase {
}
std
::
string
name_
;
framework
::
proto
::
VarType
::
Type
d
type_
;
framework
::
proto
::
VarType
::
Type
type_
;
platform
::
Place
place_
;
framework
::
Variable
*
var_
;
...
...
@@ -294,17 +314,23 @@ class PYBIND11_HIDDEN OpBase {
void
InvokeBackwardHooks
();
void
TrackPreOp
(
const
VarBase
*
inp_var
,
const
std
::
string
&
inp_name
)
{
if
(
inp_var
->
PreOp
()
&&
!
inp_var
->
IsStopGradient
())
{
VLOG
(
3
)
<<
"add pre op "
<<
inp_var
->
PreOp
()
->
Type
()
<<
" in slot "
<<
inp_name
;
pre_ops_
[
inp_name
].
push_back
(
inp_var
->
PreOp
());
pre_ops_out_idx_
[
inp_name
].
push_back
(
inp_var
->
PreOpOutIdx
());
}
else
{
VLOG
(
3
)
<<
"no pre op in slot "
<<
inp_name
<<
" input var stop_gradient: "
<<
inp_var
->
IsStopGradient
();
pre_ops_
[
inp_name
].
push_back
(
nullptr
);
// pre_ops_out_idx_[inp_name].push_back(-1);
void
TrackPreOp
(
const
std
::
string
&
inp_name
,
const
std
::
vector
<
VarBase
*>&
inputs
)
{
auto
&
pre_ops_list
=
pre_ops_
[
inp_name
];
pre_ops_list
.
reserve
(
inputs
.
size
());
auto
&
pre_ops_out_idx_list
=
pre_ops_out_idx_
[
inp_name
];
for
(
VarBase
*
inp_var
:
inputs
)
{
if
(
inp_var
->
PreOp
()
&&
!
inp_var
->
IsStopGradient
())
{
VLOG
(
3
)
<<
"add pre op "
<<
inp_var
->
PreOp
()
->
Type
()
<<
" in slot "
<<
inp_name
;
pre_ops_list
.
emplace_back
(
inp_var
->
PreOp
());
pre_ops_out_idx_list
.
push_back
(
inp_var
->
PreOpOutIdx
());
}
else
{
VLOG
(
3
)
<<
"no pre op in slot "
<<
inp_name
<<
" input var stop_gradient: "
<<
inp_var
->
IsStopGradient
();
pre_ops_list
.
emplace_back
(
nullptr
);
// pre_ops_out_idx_list.push_back(-1);
}
}
}
...
...
@@ -328,11 +354,13 @@ class PYBIND11_HIDDEN OpBase {
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
pre_ops_out_idx_
;
// Inputs to a vector of bwd ops.
std
::
vector
<
framework
::
VariableValue
Map
>
grad_input_vars_
;
std
::
vector
<
VarBasePtr
Map
>
grad_input_vars_
;
// Outputs to a vector of bwd ops.
std
::
vector
<
framework
::
VariableValue
Map
>
grad_output_vars_
;
std
::
vector
<
VarBasePtr
Map
>
grad_output_vars_
;
std
::
vector
<
py
::
object
>
backward_hooks_
;
framework
::
AttributeMap
attrs_
;
};
class
Layer
{
...
...
@@ -359,12 +387,131 @@ class PyLayer {
static
std
::
vector
<
framework
::
Variable
*>
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
);
static
std
::
vector
<
framework
::
Variable
*>
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
framework
::
Variabl
e
*>&
inputs
);
static
std
::
vector
<
VarBase
*>
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
VarBas
e
*>&
inputs
);
private:
static
std
::
vector
<
framework
::
Variable
*>
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
framework
::
Variable
*>&
ins
);
const
py
::
object
&
callable
,
const
std
::
vector
<
VarBase
*>&
ins
);
};
// infer var type context for imperative mode
class
PYBIND11_HIDDEN
RuntimeInferVarTypeContext
:
public
framework
::
InferVarTypeContext
{
public:
RuntimeInferVarTypeContext
(
const
imperative
::
VarBasePtrMap
*
inputs
,
imperative
::
VarBasePtrMap
*
outputs
,
const
framework
::
AttributeMap
*
attrs_map
)
:
InferVarTypeContext
(
nullptr
,
nullptr
),
inputs_
(
inputs
),
outputs_
(
outputs
),
attrs_
(
attrs_map
),
input_names_
(),
output_names_
(),
var_set_
()
{
input_names_
.
reserve
(
inputs_
->
size
());
for
(
auto
&
it
:
*
inputs_
)
{
for
(
imperative
::
VarBase
*
var
:
it
.
second
)
{
input_names_
[
it
.
first
].
emplace_back
(
var
->
Name
());
var_set_
[
var
->
Name
()]
=
var
;
}
}
output_names_
.
reserve
(
outputs_
->
size
());
for
(
auto
&
it
:
*
outputs_
)
{
for
(
imperative
::
VarBase
*
var
:
it
.
second
)
{
output_names_
[
it
.
first
].
emplace_back
(
var
->
Name
());
var_set_
[
var
->
Name
()]
=
var
;
}
}
}
virtual
~
RuntimeInferVarTypeContext
()
{}
framework
::
Attribute
GetAttr
(
const
std
::
string
&
name
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
attrs_
);
return
attrs_
->
at
(
name
);
}
bool
HasVar
(
const
std
::
string
&
name
)
const
override
{
return
var_set_
.
count
(
name
)
>
0
;
}
bool
HasInput
(
const
std
::
string
&
name
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
inputs_
);
return
inputs_
->
count
(
name
)
>
0
;
}
bool
HasOutput
(
const
std
::
string
&
name
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
outputs_
);
return
outputs_
->
count
(
name
)
>
0
;
}
const
std
::
vector
<
std
::
string
>&
Input
(
const
std
::
string
&
name
)
const
override
{
return
input_names_
.
at
(
name
);
}
const
std
::
vector
<
std
::
string
>&
Output
(
const
std
::
string
&
name
)
const
override
{
return
output_names_
.
at
(
name
);
}
framework
::
proto
::
VarType
::
Type
GetType
(
const
std
::
string
&
name
)
const
override
{
return
var_set_
.
at
(
name
)
->
Type
();
}
void
SetType
(
const
std
::
string
&
name
,
framework
::
proto
::
VarType
::
Type
type
)
override
{
var_set_
[
name
]
->
SetType
(
type
);
}
framework
::
proto
::
VarType
::
Type
GetDataType
(
const
std
::
string
&
name
)
const
override
{
return
var_set_
.
at
(
name
)
->
DataType
();
}
void
SetDataType
(
const
std
::
string
&
name
,
framework
::
proto
::
VarType
::
Type
type
)
override
{
var_set_
[
name
]
->
SetDataType
(
type
);
}
std
::
vector
<
framework
::
proto
::
VarType
::
Type
>
GetDataTypes
(
const
std
::
string
&
name
)
const
override
{
PADDLE_THROW
(
"GetDataTypes is not supported in runtime InferVarType"
);
}
void
SetDataTypes
(
const
std
::
string
&
name
,
const
std
::
vector
<
framework
::
proto
::
VarType
::
Type
>&
multiple_data_type
)
override
{
PADDLE_THROW
(
"SetDataTypes is not supported in runtime InferVarType"
);
}
std
::
vector
<
int64_t
>
GetShape
(
const
std
::
string
&
name
)
const
override
{
PADDLE_THROW
(
"Do not handle Shape in runtime InferVarType"
);
}
void
SetShape
(
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>&
dims
)
override
{
PADDLE_THROW
(
"Do not handle Shape in runtime InferVarType"
);
}
int32_t
GetLoDLevel
(
const
std
::
string
&
name
)
const
override
{
PADDLE_THROW
(
"Do not handle LoDLevel in runtime InferVarType"
);
}
void
SetLoDLevel
(
const
std
::
string
&
name
,
int32_t
lod_level
)
override
{
PADDLE_THROW
(
"Do not handle LoDLevel in runtime InferVarType"
);
}
private:
const
imperative
::
VarBasePtrMap
*
inputs_
;
imperative
::
VarBasePtrMap
*
outputs_
;
const
framework
::
AttributeMap
*
attrs_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
input_names_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
output_names_
;
std
::
unordered_map
<
std
::
string
,
imperative
::
VarBase
*>
var_set_
;
};
}
// namespace imperative
...
...
paddle/fluid/imperative/profiler.cc
0 → 100644
浏览文件 @
27f7a726
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/imperative/profiler.h"
#ifdef WITH_GPERFTOOLS
#include "gperftools/profiler.h"
#endif
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <mutex> // NOLINT
#include <thread> // NOLINT
DEFINE_string
(
tracer_profile_fname
,
"xxgperf"
,
"Profiler filename for imperative tracer, which generated by gperftools."
"Only valid when compiled `WITH_PROFILER=ON`. Empty if disable."
);
namespace
paddle
{
namespace
imperative
{
static
std
::
once_flag
gTracerProfileOnce
;
#ifdef WITH_GPERFTOOLS
static
bool
gTracerProfilerStarted
=
false
;
#endif
void
StartProfile
()
{
if
(
!
FLAGS_tracer_profile_fname
.
empty
())
{
std
::
call_once
(
gTracerProfileOnce
,
[]
{
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
FLAGS_tracer_profile_fname
.
c_str
());
gTracerProfilerStarted
=
true
;
#else
LOG
(
WARNING
)
<<
"Paddle is not compiled with gperftools. "
"FLAGS_tracer_profile_fname will be ignored"
;
#endif
});
}
}
void
StopProfile
()
{
#ifdef WITH_GPERFTOOLS
ProfilerFlush
();
#else
LOG
(
WARNING
)
<<
"Paddle is not compiled with gperftools. "
"FLAGS_tracer_profile_fname will be ignored"
;
#endif
}
}
// namespace imperative
}
// namespace paddle
paddle/fluid/imperative/profiler.h
0 → 100644
浏览文件 @
27f7a726
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace
paddle
{
namespace
imperative
{
extern
void
StartProfile
();
extern
void
StopProfile
();
}
// namespace imperative
}
// namespace paddle
paddle/fluid/imperative/tracer.cc
浏览文件 @
27f7a726
...
...
@@ -19,38 +19,26 @@
#include <unordered_map>
#include <unordered_set>
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef WITH_GPERFTOOLS
#include "gperftools/profiler.h"
#endif
DEFINE_string
(
tracer_profile_fname
,
""
,
"Profiler filename for imperative tracer, which generated by gperftools."
"Only valid when compiled `WITH_PROFILER=ON`. Empty if disable."
);
namespace
paddle
{
namespace
imperative
{
static
std
::
once_flag
gTracerProfileOnce
;
#ifdef WITH_GPERFTOOLS
static
bool
gTracerProfilerStarted
=
false
;
#endif
void
CreateGradOp
(
const
framework
::
OpDesc
&
op_desc
,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_set
,
const
std
::
vector
<
framework
::
BlockDesc
*>&
grad_sub_block
,
std
::
vector
<
framework
::
OpDesc
*>*
grad_op_descs
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
grad_to_var
)
{
PADDLE_ENFORCE
(
grad_op_descs
->
empty
());
std
::
vector
<
std
::
unique_ptr
<
framework
::
OpDesc
>>
descs
=
framework
::
OpInfoMap
::
Instance
()
.
Get
(
op_desc
.
Type
())
.
GradOpMaker
()(
op_desc
,
no_grad_set
,
grad_to_var
,
grad_sub_block
);
const
framework
::
OpInfo
&
op_info
=
framework
::
OpInfoMap
::
Instance
().
Get
(
op_desc
.
Type
());
if
(
!
op_info
.
grad_op_maker_
)
return
;
std
::
vector
<
std
::
unique_ptr
<
framework
::
OpDesc
>>
descs
=
op_info
.
GradOpMaker
()(
op_desc
,
no_grad_set
,
grad_to_var
,
grad_sub_block
);
for
(
auto
&
desc
:
descs
)
{
grad_op_descs
->
emplace_back
(
desc
.
release
());
}
...
...
@@ -145,31 +133,13 @@ framework::VariableNameMap CreateOutputVarNameMap(
return
result
;
}
Tracer
::
Tracer
(
framework
::
BlockDesc
*
root_block
)
:
root_block_
(
root_block
)
{
if
(
!
FLAGS_tracer_profile_fname
.
empty
())
{
std
::
call_once
(
gTracerProfileOnce
,
[]
{
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
FLAGS_tracer_profile_fname
.
c_str
());
gTracerProfilerStarted
=
true
;
#else
LOG
(
WARNING
)
<<
"Paddle is not compiled with gperftools. "
"FLAGS_tracer_profile_fname will be ignored"
;
#endif
});
}
}
Tracer
::
Tracer
(
framework
::
BlockDesc
*
root_block
)
:
root_block_
(
root_block
)
{}
std
::
set
<
std
::
string
>
Tracer
::
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
VarBasePtrMap
*
outputs
,
framework
::
AttributeMap
attrs_map
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
)
{
#ifdef WITH_GPERFTOOLS
if
(
gTracerProfilerStarted
)
{
ProfilerFlush
();
}
#endif
framework
::
VariableValueMap
invars_map
;
framework
::
VariableValueMap
outvars_map
;
...
...
@@ -184,7 +154,6 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
inp
->
Name
());
invars
.
emplace_back
(
inp
->
var_
);
op
->
TrackPreOp
(
inp
,
it
.
first
);
if
(
!
stop_gradient
)
{
current_vars_map
[
inp
->
Name
()]
=
inp
;
}
...
...
@@ -192,9 +161,10 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
<<
" inited: "
<<
inp
->
var_
->
IsInitialized
()
<<
" stop_grad: "
<<
inp
->
IsStopGradient
();
}
op
->
TrackPreOp
(
it
.
first
,
it
.
second
);
}
op
->
output_vars_
=
outputs
;
op
->
output_vars_
=
*
outputs
;
for
(
auto
it
:
op
->
output_vars_
)
{
auto
&
outvars
=
outvars_map
[
it
.
first
];
const
std
::
vector
<
VarBase
*>&
outputs
=
it
.
second
;
...
...
@@ -217,7 +187,7 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
framework
::
VariableNameMap
invars_name_map
=
CreateInputVarNameMap
(
op
,
inputs
);
framework
::
VariableNameMap
outvars_name_map
=
CreateOutputVarNameMap
(
op
,
outputs
);
CreateOutputVarNameMap
(
op
,
*
outputs
);
auto
&
info
=
framework
::
OpInfoMap
::
Instance
().
Get
(
op
->
Type
());
if
(
info
.
Checker
()
!=
nullptr
)
{
...
...
@@ -228,6 +198,11 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
framework
::
OpRegistry
::
CreateOp
(
op
->
Type
(),
invars_name_map
,
outvars_name_map
,
attrs_map
);
if
(
info
.
infer_var_type_
)
{
RuntimeInferVarTypeContext
infer_var_type_ctx
(
&
inputs
,
outputs
,
&
attrs_map
);
info
.
infer_var_type_
(
&
infer_var_type_ctx
);
}
// TODO(minqiyang): Support infer var type in imperative mode
// Run forward op
VLOG
(
3
)
<<
"tracer running "
<<
op
->
Type
();
...
...
@@ -252,6 +227,7 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
VLOG
(
5
)
<<
"start construct backward op"
;
// construct grad op descs
op
->
attrs_
=
attrs_map
;
std
::
unique_ptr
<
framework
::
OpDesc
>
fwd_op_desc
(
new
framework
::
OpDesc
(
op
->
Type
(),
invars_name_map
,
outvars_name_map
,
attrs_map
));
std
::
unique_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
grad_to_var
(
...
...
@@ -278,12 +254,12 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
auto
fwd_var_it
=
current_vars_map
.
find
(
grad_invar
);
PADDLE_ENFORCE
(
fwd_var_it
!=
current_vars_map
.
end
());
// Forward inputs or outputs.
grad_in_vars
.
emplace_back
(
fwd_var_it
->
second
->
var_
);
grad_in_vars
.
emplace_back
(
fwd_var_it
->
second
);
}
else
{
VarBase
*
var
=
current_vars_map
[
var_it
->
second
];
InitGrad
(
var
,
prepared_op
.
GetDeviceContext
());
// Douts.
grad_in_vars
.
emplace_back
(
var
->
grads_
->
var_
);
grad_in_vars
.
emplace_back
(
var
->
grads_
);
}
vars_saved_for_backward
.
insert
(
it
.
first
);
...
...
@@ -300,7 +276,7 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
op
->
Type
());
VarBase
*
var
=
current_vars_map
[
var_it
->
second
];
InitGrad
(
var
,
prepared_op
.
GetDeviceContext
());
grad_out_vars
.
push_back
(
var
->
grads_
->
var_
);
grad_out_vars
.
push_back
(
var
->
grads_
);
}
}
}
...
...
@@ -319,9 +295,7 @@ std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
std
::
vector
<
framework
::
Variable
*>
ret_vars
=
PyLayer
::
Apply
(
op
->
forward_id_
,
inputs
);
for
(
VarBase
*
inp
:
inputs
)
{
op
->
TrackPreOp
(
inp
,
PyLayer
::
kFwdInp
);
}
op
->
TrackPreOp
(
PyLayer
::
kFwdInp
,
inputs
);
std
::
vector
<
VarBase
*>&
outputs
=
op
->
output_vars_
[
PyLayer
::
kFwdOut
];
outputs
.
reserve
(
ret_vars
.
size
());
...
...
@@ -342,23 +316,23 @@ std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
auto
&
grad_output_vars
=
op
->
grad_output_vars_
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdOut
)];
for
(
const
VarBase
*
inp
:
inputs
)
{
grad_input_vars
.
push_back
(
inp
->
var_
);
for
(
VarBase
*
inp
:
inputs
)
{
grad_input_vars
.
push_back
(
inp
);
}
for
(
VarBase
*
out
:
outputs
)
{
grad_input_vars
.
push_back
(
out
->
var_
);
grad_input_vars
.
push_back
(
out
);
}
// TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
platform
::
CPUPlace
place
;
for
(
VarBase
*
out
:
outputs
)
{
InitGrad
(
out
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
grad_input_vars
.
push_back
(
out
->
grads_
->
var_
);
grad_input_vars
.
push_back
(
out
->
grads_
);
}
for
(
VarBase
*
inp
:
inputs
)
{
InitGrad
(
inp
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
grad_output_vars
.
push_back
(
inp
->
grads_
->
var_
);
grad_output_vars
.
push_back
(
inp
->
grads_
);
}
}
return
outputs
;
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
27f7a726
...
...
@@ -48,7 +48,7 @@ class Tracer {
virtual
~
Tracer
()
{}
std
::
set
<
std
::
string
>
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
VarBasePtrMap
*
outputs
,
// NOLINT
framework
::
AttributeMap
attrs_map
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
=
false
);
...
...
paddle/fluid/imperative/type_defs.h
浏览文件 @
27f7a726
...
...
@@ -25,6 +25,7 @@ class VarBase;
class
OpBase
;
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
VarBasePtrMap
;
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
const
VarBase
*>>
ConstVarBasePtrMap
;
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
OpBase
*>>
OpBasePtrMap
;
}
// namespace imperative
...
...
paddle/fluid/inference/CMakeLists.txt
浏览文件 @
27f7a726
...
...
@@ -91,5 +91,5 @@ if(WITH_TESTING)
add_subdirectory
(
tests/book
)
if
(
WITH_INFERENCE_API_TEST
)
add_subdirectory
(
tests/api
)
endif
()
endif
()
endif
()
paddle/fluid/inference/analysis/argument.h
浏览文件 @
27f7a726
...
...
@@ -27,6 +27,7 @@
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
...
...
@@ -38,7 +39,10 @@
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
using
framework
::
ir
::
Graph
;
using
VarQuantScale
=
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
bool
,
framework
::
LoDTensor
>>
;
/*
* The argument definition of both Pass and PassManagers.
...
...
@@ -127,6 +131,8 @@ struct Argument {
// Pass a set of op types to enable its mkldnn kernel
DECL_ARGUMENT_FIELD
(
mkldnn_enabled_op_types
,
MKLDNNEnabledOpTypes
,
std
::
unordered_set
<
std
::
string
>
);
// Scales for variables to be quantized
DECL_ARGUMENT_FIELD
(
quant_var_scales
,
QuantVarScales
,
VarQuantScale
);
// Passed from config.
DECL_ARGUMENT_FIELD
(
use_gpu
,
UseGPU
,
bool
);
...
...
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
27f7a726
...
...
@@ -14,6 +14,7 @@
#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
...
...
@@ -55,14 +56,14 @@ void IRPassManager::CreatePasses(Argument *argument,
".dot"
;
pass
->
Set
(
"graph_viz_path"
,
new
std
::
string
(
std
::
move
(
dot_file_path
)));
pass_num
++
;
}
if
(
pass_name
==
"mkldnn_placement_pass"
)
{
}
else
if
(
pass_name
==
"mkldnn_placement_pass"
)
{
pass
->
Set
(
"mkldnn_enabled_op_types"
,
new
std
::
unordered_set
<
std
::
string
>
(
argument
->
mkldnn_enabled_op_types
()));
}
if
(
pass_name
==
"tensorrt_subgraph_pass"
)
{
}
else
if
(
pass_name
==
"cpu_quantize_pass"
)
{
pass
->
Set
(
"quant_var_scales"
,
new
VarQuantScale
(
argument
->
quant_var_scales
()));
}
else
if
(
pass_name
==
"tensorrt_subgraph_pass"
)
{
pass
->
Set
(
"workspace_size"
,
new
int
(
argument
->
tensorrt_workspace_size
()));
pass
->
Set
(
"max_batch_size"
,
new
int
(
argument
->
tensorrt_max_batch_size
()));
pass
->
Set
(
"min_subgraph_size"
,
...
...
paddle/fluid/inference/api/analysis_config.cc
浏览文件 @
27f7a726
...
...
@@ -118,6 +118,9 @@ AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
CP_MEMBER
(
serialized_info_cache_
);
// framework related.
CP_MEMBER
(
enable_runtime_context_cache_
);
if
(
use_gpu_
)
{
pass_builder_
.
reset
(
new
GpuPassStrategy
(
*
static_cast
<
GpuPassStrategy
*>
(
other
.
pass_builder
())));
...
...
@@ -219,12 +222,23 @@ void AnalysisConfig::Update() {
}
if
(
enable_memory_optim_
)
{
pass_builder
()
->
AppendAnalysisPass
(
"memory_optimize_pass"
);
auto
analysis_passes
=
pass_builder
()
->
AnalysisPasses
();
auto
memory_opti_pass_name
=
"memory_optimize_pass"
;
bool
already_exists
=
std
::
find
(
analysis_passes
.
begin
(),
analysis_passes
.
end
(),
memory_opti_pass_name
)
!=
analysis_passes
.
end
();
if
(
!
already_exists
)
{
pass_builder
()
->
AppendAnalysisPass
(
memory_opti_pass_name
);
}
}
if
(
ir_debug_
)
{
pass_builder
()
->
TurnOnDebug
();
}
if
(
enable_runtime_context_cache_
)
{
pass_builder
()
->
AppendPass
(
"runtime_context_cache_pass"
);
}
}
std
::
string
AnalysisConfig
::
SerializeInfoCache
()
{
...
...
@@ -258,6 +272,7 @@ std::string AnalysisConfig::SerializeInfoCache() {
ss
<<
specify_input_name_
;
ss
<<
cpu_math_library_num_threads_
;
ss
<<
enable_runtime_context_cache_
;
return
ss
.
str
();
}
...
...
paddle/fluid/inference/api/paddle_analysis_config.h
浏览文件 @
27f7a726
...
...
@@ -194,6 +194,23 @@ struct AnalysisConfig {
/** Tell whether the memory optimization is activated. */
bool
enable_memory_optim
()
const
;
// framework related
/** \brief Control whether to perform runtime context cache optimization.
*
* If turned off, in Op's every execution, RuntimeContext would be called to
* relate input/output names of this Op with the corresponding variables in
* Scope.
*/
void
SwitchRuntimeContextCache
(
int
x
=
true
)
{
enable_runtime_context_cache_
=
x
;
}
/** A boolean state tell whether the runtime context cache optimization is
* actived.
*/
bool
runtime_context_cache_enabled
()
const
{
return
enable_runtime_context_cache_
;
}
friend
class
::
paddle
::
AnalysisPredictor
;
/** NOTE just for developer, not an official API, easily to be broken.
...
...
@@ -254,6 +271,15 @@ struct AnalysisConfig {
int
cpu_math_library_num_threads_
{
1
};
// framework related
// RuntimeContext is used to relate input/output names of Operator with
// the corresponding variables in Scope.
// If enable_runtime_context_cache_ is true, it means that in a same Scope,
// since the input/output names of this Op do not change in the execution,
// RuntimeContext could be created only at the first iteration of this Op's
// execution to save the elapsed time.
bool
enable_runtime_context_cache_
{
false
};
// A runtime cache, shouldn't be transferred to others.
std
::
string
serialized_info_cache_
;
...
...
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
27f7a726
...
...
@@ -110,7 +110,7 @@ set(TRANSFORMER_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/transformer")
download_model_and_data
(
${
TRANSFORMER_INSTALL_DIR
}
"temp%2Ftransformer_model.tar.gz"
"temp%2Ftransformer_data.txt.tar.gz"
)
inference_analysis_test
(
test_analyzer_transformer SRCS analyzer_transformer_tester.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
TRANSFORMER_INSTALL_DIR
}
/model --infer_data=
${
TRANSFORMER_INSTALL_DIR
}
/data.txt --batch_size=8
)
ARGS --infer_model=
${
TRANSFORMER_INSTALL_DIR
}
/model --infer_data=
${
TRANSFORMER_INSTALL_DIR
}
/data.txt --batch_size=8
SERIAL
)
# ocr
set
(
OCR_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/ocr"
)
...
...
paddle/fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc
浏览文件 @
27f7a726
...
...
@@ -107,6 +107,7 @@ void SetConfig(AnalysisConfig *cfg) {
cfg
->
DisableGpu
();
cfg
->
SwitchSpecifyInputNames
();
cfg
->
SwitchIrOptim
();
cfg
->
SwitchRuntimeContextCache
();
if
(
FLAGS_zero_copy
)
{
cfg
->
SwitchUseFeedFetchOps
(
false
);
}
...
...
paddle/fluid/inference/tests/api/analyzer_transformer_tester.cc
浏览文件 @
27f7a726
...
...
@@ -183,10 +183,13 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
}
// Easy for profiling independently.
TEST
(
Analyzer_Transformer
,
profil
e
)
{
void
profile
(
bool
use_mkldnn
=
fals
e
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
PaddleTensor
>
outputs
;
if
(
use_mkldnn
)
{
cfg
.
EnableMKLDNN
();
}
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
...
...
@@ -194,6 +197,11 @@ TEST(Analyzer_Transformer, profile) {
input_slots_all
,
&
outputs
,
FLAGS_num_threads
);
}
TEST
(
Analyzer_Transformer
,
profile
)
{
profile
();
}
#ifdef PADDLE_WITH_MKLDNN
TEST
(
Analyzer_Transformer
,
profile_mkldnn
)
{
profile
(
true
);
}
#endif
// Check the fuse status
TEST
(
Analyzer_Transformer
,
fuse_statis
)
{
AnalysisConfig
cfg
;
...
...
@@ -206,9 +214,12 @@ TEST(Analyzer_Transformer, fuse_statis) {
}
// Compare result of NativeConfig and AnalysisConfig
TEST
(
Analyzer_Transformer
,
compar
e
)
{
void
compare
(
bool
use_mkldnn
=
fals
e
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
if
(
use_mkldnn
)
{
cfg
.
EnableMKLDNN
();
}
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
...
...
@@ -216,5 +227,10 @@ TEST(Analyzer_Transformer, compare) {
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
input_slots_all
);
}
TEST
(
Analyzer_Transformer
,
compare
)
{
compare
();
}
#ifdef PADDLE_WITH_MKLDNN
TEST
(
Analyzer_Transformer
,
compare_mkldnn
)
{
compare
(
true
/* use_mkldnn */
);
}
#endif
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/api/config_printer.h
浏览文件 @
27f7a726
...
...
@@ -72,7 +72,8 @@ std::ostream &operator<<(std::ostream &os, const AnalysisConfig &config) {
}
os
<<
GenSpaces
(
num_spaces
)
<<
"enable_ir_optim: "
<<
config
.
ir_optim
()
<<
"
\n
"
;
os
<<
GenSpaces
(
num_spaces
)
<<
"enable_ir_optim: "
<<
config
.
ir_optim
()
os
<<
GenSpaces
(
num_spaces
)
<<
"use_runtime_context_cache: "
<<
config
.
runtime_context_cache_enabled
()
<<
"
\n
"
;
os
<<
GenSpaces
(
num_spaces
)
<<
"use_feed_fetch_ops: "
<<
config
.
use_feed_fetch_ops_enabled
()
<<
"
\n
"
;
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
27f7a726
...
...
@@ -58,8 +58,10 @@ if (WITH_GPU)
op_library
(
conv_fusion_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(conv2d_fusion);
\n
"
)
endif
()
op_library
(
sync_batch_norm_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(sync_batch_norm);
\n
"
)
if
(
NOT WIN32
)
op_library
(
sync_batch_norm_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(sync_batch_norm);
\n
"
)
endif
()
else
()
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
endif
()
...
...
paddle/fluid/operators/beam_search_decode_op.cc
浏览文件 @
27f7a726
...
...
@@ -178,10 +178,10 @@ Beam Search Decode Operator. This Operator constructs the full hypotheses for
each source sentence by walking back along the LoDTensorArray Input(ids)
whose lods can be used to restore the path in the beam search tree.
The Output(SentenceIds) and Output(SentenceScores) separately contain the
generated id sequences and the corresponding scores. The shapes and lods of the
two LodTensor are same. The lod level is 2 and the two levels separately
indicate how many hypotheses each source sentence has and how many ids each
The Output(SentenceIds) and Output(SentenceScores) separately contain the
generated id sequences and the corresponding scores. The shapes and lods of the
two LodTensor are same. The lod level is 2 and the two levels separately
indicate how many hypotheses each source sentence has and how many ids each
hypothesis has.
)DOC"
);
}
...
...
@@ -203,15 +203,12 @@ class BeamSearchDecodeInferShape : public framework::InferShapeBase {
class
BeamSearchDecodeInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o
:
op_desc
.
Output
(
"SentenceIds"
))
{
auto
&
sentence_ids
=
block
->
FindRecursiveOrCreateVar
(
o
);
sentence_ids
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
o
:
ctx
->
Output
(
"SentenceIds"
))
{
ctx
->
SetType
(
o
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
for
(
auto
&
o
:
op_desc
.
Output
(
"SentenceScores"
))
{
auto
&
sentence_scores
=
block
->
FindRecursiveOrCreateVar
(
o
);
sentence_scores
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
for
(
auto
&
o
:
ctx
->
Output
(
"SentenceScores"
))
{
ctx
->
SetType
(
o
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
};
...
...
paddle/fluid/operators/beam_search_op.cc
浏览文件 @
27f7a726
...
...
@@ -65,7 +65,7 @@ class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
true
);
AddComment
(
R"DOC(
This operator does the search in beams for one time step.
This operator does the search in beams for one time step.
Specifically, it selects the top-K candidate word ids of current step from
Input(ids) according to their Input(scores) for all source sentences,
where K is Attr(beam_size) and Input(ids), Input(scores) are predicted results
...
...
@@ -120,15 +120,12 @@ class BeamSearchOp : public framework::OperatorWithKernel {
class
BeamSearchInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o
:
op_desc
.
Output
(
"selected_ids"
))
{
auto
&
selected_ids
=
block
->
FindRecursiveOrCreateVar
(
o
);
selected_ids
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
o
:
ctx
->
Output
(
"selected_ids"
))
{
ctx
->
SetType
(
o
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
for
(
auto
&
o
:
op_desc
.
Output
(
"selected_scores"
))
{
auto
&
selected_scores
=
block
->
FindRecursiveOrCreateVar
(
o
);
selected_scores
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
for
(
auto
&
o
:
ctx
->
Output
(
"selected_scores"
))
{
ctx
->
SetType
(
o
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
};
...
...
paddle/fluid/operators/controlflow/get_places_op.cc
浏览文件 @
27f7a726
...
...
@@ -93,11 +93,9 @@ execution.
class
GetPlacesInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o_name
:
op_desc
.
Output
(
"Out"
))
{
block
->
FindRecursiveOrCreateVar
(
o_name
).
SetType
(
framework
::
proto
::
VarType
::
PLACE_LIST
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
o_name
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
o_name
,
framework
::
proto
::
VarType
::
PLACE_LIST
);
}
}
};
...
...
paddle/fluid/operators/controlflow/tensor_array_read_write_op.cc
浏览文件 @
27f7a726
...
...
@@ -100,16 +100,13 @@ class WriteToArrayInferShape : public framework::InferShapeBase {
class
WriteToArrayInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
x_name
=
op_desc
.
Input
(
"X"
)[
0
];
auto
out_name
=
op_desc
.
Output
(
"Out"
)[
0
];
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
x_name
=
ctx
->
Input
(
"X"
)[
0
];
auto
out_name
=
ctx
->
Output
(
"Out"
)[
0
];
VLOG
(
10
)
<<
"Set Variable "
<<
out_name
<<
" as LOD_TENSOR_ARRAY"
;
auto
&
out
=
block
->
FindRecursiveOrCreateVar
(
out_name
);
out
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
auto
*
x
=
block
->
FindVarRecursive
(
x_name
);
if
(
x
!=
nullptr
)
{
out
.
SetDataType
(
x
->
GetDataType
());
ctx
->
SetType
(
out_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
if
(
ctx
->
HasVar
(
x_name
))
{
ctx
->
SetDataType
(
out_name
,
ctx
->
GetDataType
(
x_name
));
}
}
};
...
...
paddle/fluid/operators/controlflow/while_op.cc
浏览文件 @
27f7a726
...
...
@@ -365,19 +365,16 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
class
WhileGradOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
p_names
=
op_desc
.
Input
(
kX
);
auto
pg_ig_names
=
op_desc
.
Output
(
framework
::
GradVarName
(
kX
));
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
p_names
=
ctx
->
Input
(
kX
);
auto
pg_ig_names
=
ctx
->
Output
(
framework
::
GradVarName
(
kX
));
for
(
size_t
i
=
0
;
i
<
p_names
.
size
();
++
i
)
{
auto
&
p_var
=
detail
::
Ref
(
block
->
FindVarRecursive
(
p_names
[
i
]));
auto
*
g_var
=
block
->
FindVarRecursive
(
pg_ig_names
[
i
]);
if
(
g_var
!=
nullptr
)
{
// Gradient could be @EMPTY@
if
(
ctx
->
HasVar
(
pg_ig_names
[
i
]))
{
VLOG
(
5
)
<<
"Setting "
<<
pg_ig_names
[
i
]
<<
" following "
<<
p_names
[
i
]
<<
" type: "
<<
p_var
.
GetType
(
);
g_var
->
SetType
(
p_var
.
GetType
(
));
g_var
->
SetDataType
(
p_var
.
GetDataType
(
));
<<
" type: "
<<
ctx
->
GetType
(
p_names
[
i
]
);
ctx
->
SetType
(
pg_ig_names
[
i
],
ctx
->
GetType
(
p_names
[
i
]
));
ctx
->
SetDataType
(
pg_ig_names
[
i
],
ctx
->
GetDataType
(
p_names
[
i
]
));
}
}
}
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
27f7a726
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/conv_op.h"
#include <memory>
#include <string>
#include <vector>
...
...
@@ -194,6 +195,12 @@ void Conv2DOpMaker::Make() {
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_quantizer"
,
"(bool, default false) "
"Set to true for operators that should be quantized and use "
"int8 kernel. "
"Only used on CPU."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_relu"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_residual_connection"
,
...
...
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
27f7a726
...
...
@@ -33,6 +33,7 @@ detection_library(rpn_target_assign_op SRCS rpn_target_assign_op.cc)
detection_library
(
generate_proposal_labels_op SRCS generate_proposal_labels_op.cc
)
detection_library
(
box_clip_op SRCS box_clip_op.cc box_clip_op.cu
)
detection_library
(
yolov3_loss_op SRCS yolov3_loss_op.cc
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc yolo_box_op.cu
)
detection_library
(
box_decoder_and_assign_op SRCS box_decoder_and_assign_op.cc box_decoder_and_assign_op.cu
)
if
(
WITH_GPU
)
...
...
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
27f7a726
...
...
@@ -60,14 +60,15 @@ class BoxCoderOp : public framework::OperatorWithKernel {
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
.
size
(),
3
,
"The rank of Input TargetBox must be 3"
);
if
(
axis
==
0
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
1
],
prior_box_dims
[
0
]);
}
else
if
(
axis
==
1
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
0
],
prior_box_dims
[
0
]);
}
else
{
PADDLE_THROW
(
"axis must be 0 or 1."
);
PADDLE_ENFORCE
(
axis
==
0
||
axis
==
1
,
"axis must be 0 or 1"
);
if
(
ctx
->
IsRuntime
())
{
if
(
axis
==
0
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
1
],
prior_box_dims
[
0
]);
}
else
if
(
axis
==
1
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
0
],
prior_box_dims
[
0
]);
}
PADDLE_ENFORCE_EQ
(
target_box_dims
[
2
],
prior_box_dims
[
1
]);
}
PADDLE_ENFORCE_EQ
(
target_box_dims
[
2
],
prior_box_dims
[
1
]);
ctx
->
ShareDim
(
"TargetBox"
,
/*->*/
"OutputBox"
);
}
...
...
paddle/fluid/operators/detection/yolo_box_op.cc
0 → 100644
浏览文件 @
27f7a726
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/yolo_box_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
YoloBoxOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of YoloBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ImgSize"
),
"Input(ImgSize) of YoloBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Boxes"
),
"Output(Boxes) of YoloBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Scores"
),
"Output(Scores) of YoloBoxOp should not be null."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_imgsize
=
ctx
->
GetInputDim
(
"ImgSize"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"Input(X) should be a 4-D tensor."
);
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
anchor_num
*
(
5
+
class_num
),
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num))."
);
PADDLE_ENFORCE_EQ
(
dim_imgsize
.
size
(),
2
,
"Input(ImgSize) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
dim_imgsize
[
0
],
dim_x
[
0
],
"Input(ImgSize) dim[0] and Input(X) dim[0] should be same."
);
PADDLE_ENFORCE_EQ
(
dim_imgsize
[
1
],
2
,
"Input(ImgSize) dim[1] should be 2."
);
PADDLE_ENFORCE_GT
(
anchors
.
size
(),
0
,
"Attr(anchors) length should be greater than 0."
);
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
"Attr(anchors) length should be even integer."
);
PADDLE_ENFORCE_GT
(
class_num
,
0
,
"Attr(class_num) should be an integer greater than 0."
);
int
box_num
=
dim_x
[
2
]
*
dim_x
[
3
]
*
anchor_num
;
std
::
vector
<
int64_t
>
dim_boxes
({
dim_x
[
0
],
box_num
,
4
});
ctx
->
SetOutputDim
(
"Boxes"
,
framework
::
make_ddim
(
dim_boxes
));
std
::
vector
<
int64_t
>
dim_scores
({
dim_x
[
0
],
box_num
,
class_num
});
ctx
->
SetOutputDim
(
"Scores"
,
framework
::
make_ddim
(
dim_scores
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
());
}
};
class
YoloBoxOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor of YoloBox operator is a 4-D tensor with "
"shape of [N, C, H, W]. The second dimension(C) stores "
"box locations, confidence score and classification one-hot "
"keys of each anchor box. Generally, X should be the output "
"of YOLOv3 network."
);
AddInput
(
"ImgSize"
,
"The image size tensor of YoloBox operator, "
"This is a 2-D tensor with shape of [N, 2]. This tensor holds "
"height and width of each input image used for resizing output "
"box in input image scale."
);
AddOutput
(
"Boxes"
,
"The output tensor of detection boxes of YoloBox operator, "
"This is a 3-D tensor with shape of [N, M, 4], N is the "
"batch num, M is output box number, and the 3rd dimension "
"stores [xmin, ymin, xmax, ymax] coordinates of boxes."
);
AddOutput
(
"Scores"
,
"The output tensor of detection boxes scores of YoloBox "
"operator, This is a 3-D tensor with shape of "
"[N, M, :attr:`class_num`], N is the batch num, M is "
"output box number."
);
AddAttr
<
int
>
(
"class_num"
,
"The number of classes to predict."
);
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
"The anchor width and height, "
"it will be parsed pair by pair."
)
.
SetDefault
(
std
::
vector
<
int
>
{});
AddAttr
<
int
>
(
"downsample_ratio"
,
"The downsample ratio from network input to YoloBox operator "
"input, so 32, 16, 8 should be set for the first, second, "
"and thrid YoloBox operators."
)
.
SetDefault
(
32
);
AddAttr
<
float
>
(
"conf_thresh"
,
"The confidence scores threshold of detection boxes. "
"Boxes with confidence scores under threshold should "
"be ignored."
)
.
SetDefault
(
0.01
);
AddComment
(
R"DOC(
This operator generates YOLO detection boxes from output of YOLOv3 network.
The output of previous network is in shape [N, C, H, W], while H and W
should be the same, H and W specify the grid size, each grid point predict
given number boxes, this given number, which following will be represented as S,
is specified by the number of anchors. In the second dimension(the channel
dimension), C should be equal to S * (5 + class_num), class_num is the object
category number of source dataset(such as 80 in coco dataset), so the
second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
also includes confidence score of the box and class one-hot key of each anchor
box.
Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
predictions should be as follows:
$$
b_x = \\sigma(t_x) + c_x
$$
$$
b_y = \\sigma(t_y) + c_y
$$
$$
b_w = p_w e^{t_w}
$$
$$
b_h = p_h e^{t_h}
$$
in the equation above, :math:`c_x, c_y` is the left top corner of current grid
and :math:`p_w, p_h` is specified by anchors.
The logistic regression value of the 5th channel of each anchor prediction boxes
represents the confidence score of each prediction box, and the logistic
regression value of the last :attr:`class_num` channels of each anchor prediction
boxes represents the classifcation scores. Boxes with confidence scores less than
:attr:`conf_thresh` should be ignored, and box final scores is the product of
confidence scores and classification scores.
$$
score_{pred} = score_{conf} * score_{class}
$$
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
yolo_box
,
ops
::
YoloBoxOp
,
ops
::
YoloBoxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
yolo_box
,
ops
::
YoloBoxKernel
<
float
>
,
ops
::
YoloBoxKernel
<
double
>
);
paddle/fluid/operators/detection/yolo_box_op.cu
0 → 100644
浏览文件 @
27f7a726
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/yolo_box_op.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
__global__
void
KeYoloBoxFw
(
const
T
*
input
,
const
int
*
imgsize
,
T
*
boxes
,
T
*
scores
,
const
float
conf_thresh
,
const
int
*
anchors
,
const
int
n
,
const
int
h
,
const
int
w
,
const
int
an_num
,
const
int
class_num
,
const
int
box_num
,
int
input_size
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
T
box
[
4
];
for
(;
tid
<
n
*
box_num
;
tid
+=
stride
)
{
int
grid_num
=
h
*
w
;
int
i
=
tid
/
box_num
;
int
j
=
(
tid
%
box_num
)
/
grid_num
;
int
k
=
(
tid
%
grid_num
)
/
w
;
int
l
=
tid
%
w
;
int
an_stride
=
(
5
+
class_num
)
*
grid_num
;
int
img_height
=
imgsize
[
2
*
i
];
int
img_width
=
imgsize
[
2
*
i
+
1
];
int
obj_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
4
);
T
conf
=
sigmoid
<
T
>
(
input
[
obj_idx
]);
if
(
conf
<
conf_thresh
)
{
continue
;
}
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
0
);
GetYoloBox
<
T
>
(
box
,
input
,
anchors
,
l
,
k
,
j
,
h
,
input_size
,
box_idx
,
grid_num
,
img_height
,
img_width
);
box_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes
,
box
,
box_idx
,
img_height
,
img_width
);
int
label_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
5
);
int
score_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
class_num
;
CalcLabelScore
<
T
>
(
scores
,
input
,
label_idx
,
score_idx
,
class_num
,
conf
,
grid_num
);
}
}
template
<
typename
T
>
class
YoloBoxOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
img_size
=
ctx
.
Input
<
Tensor
>
(
"ImgSize"
);
auto
*
boxes
=
ctx
.
Output
<
Tensor
>
(
"Boxes"
);
auto
*
scores
=
ctx
.
Output
<
Tensor
>
(
"Scores"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
conf_thresh
=
ctx
.
Attr
<
float
>
(
"conf_thresh"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size
=
downsample_ratio
*
h
;
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
int
bytes
=
sizeof
(
int
)
*
anchors
.
size
();
auto
anchors_ptr
=
allocator
.
Allocate
(
sizeof
(
int
)
*
anchors
.
size
());
int
*
anchors_data
=
reinterpret_cast
<
int
*>
(
anchors_ptr
->
ptr
());
const
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
const
auto
cplace
=
platform
::
CPUPlace
();
memory
::
Copy
(
gplace
,
anchors_data
,
cplace
,
anchors
.
data
(),
bytes
,
dev_ctx
.
stream
());
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
img_size
->
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
ctx
.
GetPlace
());
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
boxes
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
scores
,
static_cast
<
T
>
(
0
));
int
grid_dim
=
(
n
*
box_num
+
512
-
1
)
/
512
;
grid_dim
=
grid_dim
>
8
?
8
:
grid_dim
;
KeYoloBoxFw
<
T
><<<
grid_dim
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
imgsize_data
,
boxes_data
,
scores_data
,
conf_thresh
,
anchors_data
,
n
,
h
,
w
,
an_num
,
class_num
,
box_num
,
input_size
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
yolo_box
,
ops
::
YoloBoxOpCUDAKernel
<
float
>
,
ops
::
YoloBoxOpCUDAKernel
<
double
>
);
paddle/fluid/operators/detection/yolo_box_op.h
0 → 100644
浏览文件 @
27f7a726
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
HOSTDEVICE
inline
T
sigmoid
(
T
x
)
{
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
));
}
template
<
typename
T
>
HOSTDEVICE
inline
void
GetYoloBox
(
T
*
box
,
const
T
*
x
,
const
int
*
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
input_size
,
int
index
,
int
stride
,
int
img_height
,
int
img_width
)
{
box
[
0
]
=
(
i
+
sigmoid
<
T
>
(
x
[
index
]))
*
img_width
/
grid_size
;
box
[
1
]
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
]))
*
img_height
/
grid_size
;
box
[
2
]
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
input_size
;
box
[
3
]
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
img_height
/
input_size
;
}
HOSTDEVICE
inline
int
GetEntryIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
template
<
typename
T
>
HOSTDEVICE
inline
void
CalcDetectionBox
(
T
*
boxes
,
T
*
box
,
const
int
box_idx
,
const
int
img_height
,
const
int
img_width
)
{
boxes
[
box_idx
]
=
box
[
0
]
-
box
[
2
]
/
2
;
boxes
[
box_idx
+
1
]
=
box
[
1
]
-
box
[
3
]
/
2
;
boxes
[
box_idx
+
2
]
=
box
[
0
]
+
box
[
2
]
/
2
;
boxes
[
box_idx
+
3
]
=
box
[
1
]
+
box
[
3
]
/
2
;
boxes
[
box_idx
]
=
boxes
[
box_idx
]
>
0
?
boxes
[
box_idx
]
:
static_cast
<
T
>
(
0
);
boxes
[
box_idx
+
1
]
=
boxes
[
box_idx
+
1
]
>
0
?
boxes
[
box_idx
+
1
]
:
static_cast
<
T
>
(
0
);
boxes
[
box_idx
+
2
]
=
boxes
[
box_idx
+
2
]
<
img_width
-
1
?
boxes
[
box_idx
+
2
]
:
static_cast
<
T
>
(
img_width
-
1
);
boxes
[
box_idx
+
3
]
=
boxes
[
box_idx
+
3
]
<
img_height
-
1
?
boxes
[
box_idx
+
3
]
:
static_cast
<
T
>
(
img_height
-
1
);
}
template
<
typename
T
>
HOSTDEVICE
inline
void
CalcLabelScore
(
T
*
scores
,
const
T
*
input
,
const
int
label_idx
,
const
int
score_idx
,
const
int
class_num
,
const
T
conf
,
const
int
stride
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
scores
[
score_idx
+
i
]
=
conf
*
sigmoid
<
T
>
(
input
[
label_idx
+
i
*
stride
]);
}
}
template
<
typename
T
>
class
YoloBoxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
imgsize
=
ctx
.
Input
<
Tensor
>
(
"ImgSize"
);
auto
*
boxes
=
ctx
.
Output
<
Tensor
>
(
"Boxes"
);
auto
*
scores
=
ctx
.
Output
<
Tensor
>
(
"Scores"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
conf_thresh
=
ctx
.
Attr
<
float
>
(
"conf_thresh"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size
=
downsample_ratio
*
h
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
Tensor
anchors_
;
auto
anchors_data
=
anchors_
.
mutable_data
<
int
>
({
an_num
*
2
},
ctx
.
GetPlace
());
std
::
copy
(
anchors
.
begin
(),
anchors
.
end
(),
anchors_data
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
imgsize
->
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
ctx
.
GetPlace
());
memset
(
boxes_data
,
0
,
boxes
->
numel
()
*
sizeof
(
T
));
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
ctx
.
GetPlace
());
memset
(
scores_data
,
0
,
scores
->
numel
()
*
sizeof
(
T
));
T
box
[
4
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
int
img_height
=
imgsize_data
[
2
*
i
];
int
img_width
=
imgsize_data
[
2
*
i
+
1
];
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
obj_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
4
);
T
conf
=
sigmoid
<
T
>
(
input_data
[
obj_idx
]);
if
(
conf
<
conf_thresh
)
{
continue
;
}
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
);
GetYoloBox
<
T
>
(
box
,
input_data
,
anchors_data
,
l
,
k
,
j
,
h
,
input_size
,
box_idx
,
stride
,
img_height
,
img_width
);
box_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes_data
,
box
,
box_idx
,
img_height
,
img_width
);
int
label_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
5
);
int
score_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
class_num
;
CalcLabelScore
<
T
>
(
scores_data
,
input_data
,
label_idx
,
score_idx
,
class_num
,
conf
,
stride
);
}
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/detection/yolov3_loss_op.cc
浏览文件 @
27f7a726
...
...
@@ -10,6 +10,7 @@
limitations under the License. */
#include "paddle/fluid/operators/detection/yolov3_loss_op.h"
#include <memory>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
...
...
@@ -72,6 +73,18 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GT
(
class_num
,
0
,
"Attr(class_num) should be an integer greater then 0."
);
if
(
ctx
->
HasInput
(
"GTScore"
))
{
auto
dim_gtscore
=
ctx
->
GetInputDim
(
"GTScore"
);
PADDLE_ENFORCE_EQ
(
dim_gtscore
.
size
(),
2
,
"Input(GTScore) should be a 2-D tensor"
);
PADDLE_ENFORCE_EQ
(
dim_gtscore
[
0
],
dim_gtbox
[
0
],
"Input(GTBox) and Input(GTScore) dim[0] should be same"
);
PADDLE_ENFORCE_EQ
(
dim_gtscore
[
1
],
dim_gtbox
[
1
],
"Input(GTBox) and Input(GTScore) dim[1] should be same"
);
}
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
]});
ctx
->
SetOutputDim
(
"Loss"
,
framework
::
make_ddim
(
dim_out
));
...
...
@@ -112,6 +125,12 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
"This is a 2-D tensor with shape of [N, max_box_num], "
"and each element should be an integer to indicate the "
"box class id."
);
AddInput
(
"GTScore"
,
"The score of GTLabel, This is a 2-D tensor in same shape "
"GTLabel, and score values should in range (0, 1). This "
"input is for GTLabel score can be not 1.0 in image mixup "
"augmentation."
)
.
AsDispensable
();
AddOutput
(
"Loss"
,
"The output yolov3 loss tensor, "
"This is a 1-D tensor with shape of [N]"
);
...
...
@@ -143,6 +162,9 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
float
>
(
"ignore_thresh"
,
"The ignore threshold to ignore confidence loss."
)
.
SetDefault
(
0.7
);
AddAttr
<
bool
>
(
"use_label_smooth"
,
"Whether to use label smooth. Default True."
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
This operator generates yolov3 loss based on given predict result and ground
truth boxes.
...
...
@@ -204,6 +226,15 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
loss = (loss_{xy} + loss_{wh}) * weight_{box}
+ loss_{conf} + loss_{class}
$$
While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
target will be smoothed when calculating classification loss, target of
positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
negetive samples will be smoothed to :math:`1.0 / class\_num`.
While :attr:`GTScore` is given, which means the mixup score of ground truth
boxes, all losses incured by a ground truth box will be multiplied by its
mixup score.
)DOC"
);
}
};
...
...
@@ -240,6 +271,7 @@ class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"GTBox"
,
Input
(
"GTBox"
));
op
->
SetInput
(
"GTLabel"
,
Input
(
"GTLabel"
));
op
->
SetInput
(
"GTScore"
,
Input
(
"GTScore"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
OutputGrad
(
"Loss"
));
op
->
SetInput
(
"ObjectnessMask"
,
Output
(
"ObjectnessMask"
));
op
->
SetInput
(
"GTMatchMask"
,
Output
(
"GTMatchMask"
));
...
...
@@ -249,6 +281,7 @@ class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"GTBox"
),
{});
op
->
SetOutput
(
framework
::
GradVarName
(
"GTLabel"
),
{});
op
->
SetOutput
(
framework
::
GradVarName
(
"GTScore"
),
{});
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
...
...
paddle/fluid/operators/detection/yolov3_loss_op.h
浏览文件 @
27f7a726
...
...
@@ -37,8 +37,8 @@ static T SigmoidCrossEntropy(T x, T label) {
}
template
<
typename
T
>
static
T
L
2
Loss
(
T
x
,
T
y
)
{
return
0.5
*
(
y
-
x
)
*
(
y
-
x
);
static
T
L
1
Loss
(
T
x
,
T
y
)
{
return
std
::
abs
(
y
-
x
);
}
template
<
typename
T
>
...
...
@@ -47,8 +47,8 @@ static T SigmoidCrossEntropyGrad(T x, T label) {
}
template
<
typename
T
>
static
T
L
2
LossGrad
(
T
x
,
T
y
)
{
return
x
-
y
;
static
T
L
1
LossGrad
(
T
x
,
T
y
)
{
return
x
>
y
?
1.0
:
-
1.0
;
}
static
int
GetMaskIndex
(
std
::
vector
<
int
>
mask
,
int
val
)
{
...
...
@@ -121,47 +121,49 @@ template <typename T>
static
void
CalcBoxLocationLoss
(
T
*
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
)
{
int
input_size
,
int
stride
,
T
score
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
;
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
;
loss
[
0
]
+=
L
2
Loss
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
;
loss
[
0
]
+=
L
2
Loss
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
;
loss
[
0
]
+=
L
1
Loss
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
;
loss
[
0
]
+=
L
1
Loss
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
;
}
template
<
typename
T
>
static
void
CalcBoxLocationLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
)
{
int
grid_size
,
int
input_size
,
int
stride
,
T
score
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
input_grad
[
box_idx
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
*
loss
;
input_grad
[
box_idx
+
stride
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
*
loss
;
input_grad
[
box_idx
+
2
*
stride
]
=
L
2
LossGrad
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
*
loss
;
L
1
LossGrad
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
*
loss
;
input_grad
[
box_idx
+
3
*
stride
]
=
L
2
LossGrad
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
*
loss
;
L
1
LossGrad
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
*
loss
;
}
template
<
typename
T
>
static
inline
void
CalcLabelLoss
(
T
*
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
)
{
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
pred
,
(
i
==
label
)
?
1.0
:
0.0
)
;
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
;
}
}
...
...
@@ -169,11 +171,13 @@ template <typename T>
static
inline
void
CalcLabelLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
)
{
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
input_grad
[
index
+
i
*
stride
]
=
SigmoidCrossEntropyGrad
<
T
>
(
pred
,
(
i
==
label
)
?
1.0
:
0.0
)
*
loss
;
SigmoidCrossEntropyGrad
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
*
loss
;
}
}
...
...
@@ -188,8 +192,8 @@ static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
1e-5
)
{
// positive sample: obj =
1
loss
[
i
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
k
*
w
+
l
],
1.0
);
// positive sample: obj =
mixup score
loss
[
i
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
;
}
else
if
(
obj
>
-
0.5
)
{
// negetive sample: obj = 0
loss
[
i
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
k
*
w
+
l
],
0.0
);
...
...
@@ -215,7 +219,8 @@ static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
1e-5
)
{
input_grad
[
k
*
w
+
l
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
loss
[
i
];
SigmoidCrossEntropyGrad
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
*
loss
[
i
];
}
else
if
(
obj
>
-
0.5
)
{
input_grad
[
k
*
w
+
l
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
k
*
w
+
l
],
0.0
)
*
loss
[
i
];
...
...
@@ -252,6 +257,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_score
=
ctx
.
Input
<
Tensor
>
(
"GTScore"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
*
objness_mask
=
ctx
.
Output
<
Tensor
>
(
"ObjectnessMask"
);
auto
*
gt_match_mask
=
ctx
.
Output
<
Tensor
>
(
"GTMatchMask"
);
...
...
@@ -260,6 +266,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
bool
use_label_smooth
=
ctx
.
Attr
<
bool
>
(
"use_label_smooth"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
...
...
@@ -272,6 +279,13 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
label_pos
=
1.0
-
1.0
/
static_cast
<
T
>
(
class_num
);
label_neg
=
1.0
/
static_cast
<
T
>
(
class_num
);
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
...
...
@@ -283,6 +297,19 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
*
gt_match_mask_data
=
gt_match_mask
->
mutable_data
<
int
>
({
n
,
b
},
ctx
.
GetPlace
());
const
T
*
gt_score_data
;
if
(
!
gt_score
)
{
Tensor
gtscore
;
gtscore
.
mutable_data
<
T
>
({
n
,
b
},
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
()(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
gtscore
,
static_cast
<
T
>
(
1.0
));
gt_score
=
&
gtscore
;
gt_score_data
=
gtscore
.
data
<
T
>
();
}
else
{
gt_score_data
=
gt_score
->
data
<
T
>
();
}
// calc valid gt box mask, avoid calc duplicately in following code
Tensor
gt_valid_mask
;
bool
*
gt_valid_mask_data
=
...
...
@@ -355,19 +382,20 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
mask_idx
=
GetMaskIndex
(
anchor_mask
,
best_n
);
gt_match_mask_data
[
i
*
b
+
t
]
=
mask_idx
;
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLoss
<
T
>
(
loss_data
+
i
,
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
obj_mask_data
[
obj_idx
]
=
1.0
;
obj_mask_data
[
obj_idx
]
=
score
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
class_num
,
stride
);
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
}
}
}
...
...
@@ -384,6 +412,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_score
=
ctx
.
Input
<
Tensor
>
(
"GTScore"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
objness_mask
=
ctx
.
Input
<
Tensor
>
(
"ObjectnessMask"
);
...
...
@@ -392,6 +421,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
bool
use_label_smooth
=
ctx
.
Attr
<
bool
>
(
"use_label_smooth"
);
const
int
n
=
input_grad
->
dims
()[
0
];
const
int
c
=
input_grad
->
dims
()[
1
];
...
...
@@ -404,6 +434,13 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
label_pos
=
1.0
-
1.0
/
static_cast
<
T
>
(
class_num
);
label_neg
=
1.0
/
static_cast
<
T
>
(
class_num
);
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
...
...
@@ -414,25 +451,41 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
memset
(
input_grad_data
,
0
,
input_grad
->
numel
()
*
sizeof
(
T
));
const
T
*
gt_score_data
;
if
(
!
gt_score
)
{
Tensor
gtscore
;
gtscore
.
mutable_data
<
T
>
({
n
,
b
},
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
()(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
gtscore
,
static_cast
<
T
>
(
1.0
));
gt_score
=
&
gtscore
;
gt_score_data
=
gtscore
.
data
<
T
>
();
}
else
{
gt_score_data
=
gt_score
->
data
<
T
>
();
}
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
int
mask_idx
=
gt_match_mask_data
[
i
*
b
+
t
];
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
label_idx
,
label
,
class_num
,
stride
);
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
}
}
}
...
...
paddle/fluid/operators/distributed_ops/fake_init_op.cc
浏览文件 @
27f7a726
...
...
@@ -56,8 +56,7 @@ class FakeInitOp : public framework::OperatorBase {
class
FakeInitOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
class
FakeInitOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
paddle/fluid/operators/distributed_ops/merge_ids_op.cc
浏览文件 @
27f7a726
...
...
@@ -114,11 +114,10 @@ class MergeIdsOp : public framework::OperatorWithKernel {
class
MergeIdsOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
*
input_var
=
block
->
Var
(
op_desc
.
Input
(
"Ids"
)[
0
]);
for
(
auto
&
out_var
:
op_desc
.
Output
(
"Out"
))
{
block
->
Var
(
out_var
)
->
SetType
(
input_var
->
GetType
());
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
input_type
=
ctx
->
GetType
(
ctx
->
Input
(
"Ids"
)[
0
]);
for
(
auto
&
out_var
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
out_var
,
input_type
);
}
}
};
...
...
paddle/fluid/operators/distributed_ops/split_ids_op.cc
浏览文件 @
27f7a726
...
...
@@ -14,6 +14,8 @@ limitations under the License. */
#include "paddle/fluid/operators/distributed_ops/split_ids_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -71,11 +73,10 @@ class SplitIdsOp : public framework::OperatorWithKernel {
class
SplitIdsOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
*
input_var
=
block
->
Var
(
op_desc
.
Input
(
"Ids"
)[
0
]);
for
(
auto
&
out_var
:
op_desc
.
Output
(
"Out"
))
{
block
->
Var
(
out_var
)
->
SetType
(
input_var
->
GetType
());
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
input_type
=
ctx
->
GetType
(
ctx
->
Input
(
"Ids"
)[
0
]);
for
(
auto
&
out_var
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
out_var
,
input_type
);
}
}
};
...
...
paddle/fluid/operators/fake_quantize_op.cc
浏览文件 @
27f7a726
...
...
@@ -81,6 +81,30 @@ struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
template
struct
FindRangeAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
<
typename
T
>
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
framework
::
Tensor
&
in_accum
,
const
framework
::
Tensor
&
in_state
,
const
T
*
cur_scale
,
const
float
rate
,
framework
::
Tensor
*
out_state
,
framework
::
Tensor
*
out_accum
,
framework
::
Tensor
*
out_scale
)
{
T
accum
=
in_accum
.
data
<
T
>
()[
0
];
T
state
=
in_state
.
data
<
T
>
()[
0
];
T
scale
=
cur_scale
[
0
];
state
=
rate
*
state
+
1
;
accum
=
rate
*
accum
+
scale
;
scale
=
accum
/
state
;
out_state
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())[
0
]
=
state
;
out_accum
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())[
0
]
=
accum
;
out_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())[
0
]
=
scale
;
}
};
template
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
float
>;
class
FakeQuantizeAbsMaxOp
:
public
framework
::
OperatorWithKernel
{
public:
FakeQuantizeAbsMaxOp
(
const
std
::
string
&
type
,
...
...
@@ -255,6 +279,78 @@ $$Out = round(X/scale * range)$$
}
};
class
FakeQuantizeMovingAverageAbsMaxOp
:
public
framework
::
OperatorWithKernel
{
public:
FakeQuantizeMovingAverageAbsMaxOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of FakeQuantizeMovingAverageAbsMaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of FakeQuantizeMovingAverageAbsMaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"OutScale"
),
"Output(OutScale) of FakeQuantizeMovingAverageAbsMaxOp "
"should not be null"
);
if
(
ctx
->
HasOutput
(
"OutState"
))
{
ctx
->
SetOutputDim
(
"OutState"
,
{
1
});
}
if
(
ctx
->
HasOutput
(
"OutAccum"
))
{
ctx
->
SetOutputDim
(
"OutAccum"
,
{
1
});
}
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
"OutScale"
,
{
1
});
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
}
};
class
FakeQuantizeMovingAverageAbsMaxOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) Input is float data type."
);
AddInput
(
"InScale"
,
"Last scale."
);
AddInput
(
"InAccum"
,
"Last accum."
).
AsDispensable
();
AddInput
(
"InState"
,
"Last state."
).
AsDispensable
();
AddOutput
(
"Out"
,
"(Tensor) Output of quantized low level tensor."
);
AddOutput
(
"OutScale"
,
" Current scale"
);
AddOutput
(
"OutState"
,
"(Tensor) state buffer."
).
AsDispensable
();
AddOutput
(
"OutAccum"
,
"(Tensor) accum buffer."
).
AsDispensable
();
AddAttr
<
float
>
(
"moving_rate"
,
"(float, default 0.9) moving rate."
)
.
SetDefault
(
0.9
);
AddAttr
<
int
>
(
"bit_length"
,
"(int, default 8), quantization bit number."
)
.
SetDefault
(
8
)
.
AddCustomChecker
([](
const
int
&
bit_length
)
{
PADDLE_ENFORCE
(
bit_length
>=
1
&&
bit_length
<=
16
,
"'bit_length' should be between 1 and 16."
);
});
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
FakeQuantize operator is used in static quantization.
$$scale = (0.9*max(abs(x))+accum)/(0.9*state+1)$$
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -273,6 +369,12 @@ REGISTER_OPERATOR(fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
REGISTER_OP_CPU_KERNEL
(
fake_quantize_range_abs_max
,
ops
::
FakeQuantizeRangeAbsMaxKernel
<
CPU
,
float
>
);
REGISTER_OPERATOR
(
fake_quantize_moving_average_abs_max
,
ops
::
FakeQuantizeMovingAverageAbsMaxOp
,
ops
::
FakeQuantizeMovingAverageAbsMaxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
fake_quantize_moving_average_abs_max
,
ops
::
FakeQuantizeMovingAverageAbsMaxKernel
<
CPU
,
float
>
);
REGISTER_OPERATOR
(
fake_channel_wise_quantize_abs_max
,
ops
::
FakeChannelWiseQuantizeAbsMaxOp
,
ops
::
FakeChannelWiseQuantizeAbsMaxOpMaker
,
...
...
paddle/fluid/operators/fake_quantize_op.cu
浏览文件 @
27f7a726
...
...
@@ -147,6 +147,41 @@ struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, T> {
template
struct
FindRangeAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in_accum
,
const
framework
::
Tensor
&
in_state
,
const
T
*
cur_scale
,
const
float
rate
,
framework
::
Tensor
*
out_state
,
framework
::
Tensor
*
out_accum
,
framework
::
Tensor
*
out_scale
)
{
const
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
T
accum
;
memory
::
Copy
(
platform
::
CPUPlace
(),
&
accum
,
gpu_place
,
in_accum
.
data
<
T
>
(),
sizeof
(
T
),
0
);
T
state
;
memory
::
Copy
(
platform
::
CPUPlace
(),
&
state
,
gpu_place
,
in_state
.
data
<
T
>
(),
sizeof
(
T
),
0
);
T
scale
;
memory
::
Copy
(
platform
::
CPUPlace
(),
&
scale
,
gpu_place
,
cur_scale
,
sizeof
(
T
),
0
);
state
=
rate
*
state
+
1
;
accum
=
rate
*
accum
+
scale
;
scale
=
accum
/
state
;
memory
::
Copy
(
gpu_place
,
out_accum
->
mutable_data
<
T
>
(
gpu_place
),
platform
::
CPUPlace
(),
&
accum
,
sizeof
(
T
),
0
);
memory
::
Copy
(
gpu_place
,
out_state
->
mutable_data
<
T
>
(
gpu_place
),
platform
::
CPUPlace
(),
&
state
,
sizeof
(
T
),
0
);
memory
::
Copy
(
gpu_place
,
out_scale
->
mutable_data
<
T
>
(
gpu_place
),
platform
::
CPUPlace
(),
&
scale
,
sizeof
(
T
),
0
);
}
};
template
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
...
...
@@ -178,3 +213,6 @@ REGISTER_OP_CUDA_KERNEL(fake_channel_wise_quantize_abs_max,
ops
::
FakeChannelWiseQuantizeAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_range_abs_max
,
ops
::
FakeQuantizeRangeAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_moving_average_abs_max
,
ops
::
FakeQuantizeMovingAverageAbsMaxKernel
<
CUDA
,
float
>
);
paddle/fluid/operators/fake_quantize_op.h
浏览文件 @
27f7a726
...
...
@@ -42,12 +42,20 @@ struct FindRangeAbsMaxFunctor {
framework
::
Tensor
*
scales_arr
,
framework
::
Tensor
*
out_scale
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
FindMovingAverageAbsMaxFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in_accum
,
const
framework
::
Tensor
&
in_state
,
const
framework
::
Tensor
&
cur_scale
,
framework
::
Tensor
*
out_state
,
framework
::
Tensor
*
out_accum
,
framework
::
Tensor
*
out_scale
);
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeQuantizeAbsMaxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out_scale
=
context
.
Output
<
framework
::
Tensor
>
(
"OutScale"
);
T
*
out_s
=
out_scale
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
@@ -138,5 +146,54 @@ class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeQuantizeMovingAverageAbsMaxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in_scale
=
context
.
Input
<
framework
::
Tensor
>
(
"InScale"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
// testing
if
(
is_test
)
{
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
in_scale
,
bin_cnt
,
out
);
return
;
}
// training
auto
*
in_accum
=
context
.
Input
<
framework
::
Tensor
>
(
"InAccum"
);
auto
*
in_state
=
context
.
Input
<
framework
::
Tensor
>
(
"InState"
);
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
auto
cur_scale
=
allocator
.
Allocate
(
1
*
sizeof
(
T
));
T
*
cur_scale_data
=
static_cast
<
T
*>
(
cur_scale
->
ptr
());
FindAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
->
data
<
T
>
(),
in
->
numel
(),
cur_scale_data
);
auto
*
out_state
=
context
.
Output
<
framework
::
Tensor
>
(
"OutState"
);
auto
*
out_accum
=
context
.
Output
<
framework
::
Tensor
>
(
"OutAccum"
);
auto
*
out_scale
=
context
.
Output
<
framework
::
Tensor
>
(
"OutScale"
);
out_state
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out_accum
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out_scale
->
mutable_data
<
T
>
(
context
.
GetPlace
());
float
moving_rate
=
context
.
Attr
<
float
>
(
"moving_rate"
);
FindMovingAverageAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in_accum
,
*
in_state
,
cur_scale_data
,
moving_rate
,
out_state
,
out_accum
,
out_scale
);
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
out
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/fc_op.cc
浏览文件 @
27f7a726
...
...
@@ -55,17 +55,8 @@ void FCOp::InferShape(framework::InferShapeContext* ctx) const {
"The input tensor Input's rank of FCOp should be larger than "
"in_num_col_dims."
);
auto
in_mat_dims
=
framework
::
flatten_to_2d
(
in_dims
,
in_num_col_dims
);
PADDLE_ENFORCE_EQ
(
in_mat_dims
[
1
],
w_dims
[
0
],
"Fully Connected input and weigth size do not match. %s, %s"
);
std
::
vector
<
int64_t
>
output_dims
;
output_dims
.
reserve
(
static_cast
<
size_t
>
(
in_num_col_dims
+
1
));
for
(
int
i
=
0
;
i
<
in_num_col_dims
;
++
i
)
{
output_dims
.
push_back
(
in_dims
[
i
]);
}
output_dims
.
push_back
(
w_dims
[
1
]);
FCOutputSize
(
in_dims
,
w_dims
,
output_dims
,
in_num_col_dims
);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_dims
));
ctx
->
ShareLoD
(
"Input"
,
"Out"
);
...
...
@@ -128,6 +119,9 @@ void FCOpMaker::Make() {
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
framework
::
kAllKernelsMustComputeRuntimeShape
,
"Skip calling InferShape() function in the runtime."
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
Fully Connected Operator.
...
...
@@ -142,13 +136,20 @@ class FCOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
input
=
ctx
.
Input
<
framework
::
LoD
Tensor
>
(
"Input"
);
auto
w
=
ctx
.
Input
<
Tensor
>
(
"W"
);
auto
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
output
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
int
in_num_col_dims
=
ctx
.
Attr
<
int
>
(
"in_num_col_dims"
);
auto
w_dims
=
w
->
dims
();
std
::
vector
<
int64_t
>
output_dims
;
FCOutputSize
(
input
->
dims
(),
w_dims
,
output_dims
,
in_num_col_dims
);
output
->
Resize
(
framework
::
make_ddim
(
output_dims
));
output
->
set_lod
(
input
->
lod
());
auto
out_dims
=
output
->
dims
();
int
M
=
framework
::
product
(
out_dims
)
/
out_dims
[
out_dims
.
size
()
-
1
];
int
M
=
framework
::
product
(
out_dims
)
/
w_dims
[
1
];
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
w_data
=
w
->
data
<
T
>
();
...
...
paddle/fluid/operators/fc_op.h
浏览文件 @
27f7a726
...
...
@@ -48,5 +48,21 @@ class FCOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
;
};
inline
void
FCOutputSize
(
const
framework
::
DDim
&
in_dims
,
const
framework
::
DDim
&
w_dims
,
std
::
vector
<
int64_t
>&
out_dims
,
// NOLINT
int
in_num_col_dims
)
{
auto
in_mat_dims
=
framework
::
flatten_to_2d
(
in_dims
,
in_num_col_dims
);
PADDLE_ENFORCE_EQ
(
in_mat_dims
[
1
],
w_dims
[
0
],
"Fully Connected input and weigth size do not match. %s, %s"
);
out_dims
.
reserve
(
static_cast
<
size_t
>
(
in_num_col_dims
+
1
));
for
(
int
i
=
0
;
i
<
in_num_col_dims
;
++
i
)
{
out_dims
.
push_back
(
in_dims
[
i
]);
}
out_dims
.
push_back
(
w_dims
[
1
]);
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/fill_constant_op.cc
浏览文件 @
27f7a726
...
...
@@ -39,12 +39,11 @@ class FillConstantOp : public framework::OperatorWithKernel {
class
FillConstantOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"dtype"
)));
auto
&
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetDataType
(
data_type
);
boost
::
get
<
int
>
(
ctx
->
GetAttr
(
"dtype"
)));
auto
&
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
ctx
->
SetDataType
(
out_var_name
,
data_type
);
}
};
...
...
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
浏览文件 @
27f7a726
...
...
@@ -88,7 +88,8 @@ class FusedEmbeddingSeqPoolOpMaker : public framework::OpProtoAndCheckerMaker {
"(boolean, default false) "
"Sparse update."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
framework
::
kAllKernelsMustComputeRuntimeShape
,
""
)
AddAttr
<
bool
>
(
framework
::
kAllKernelsMustComputeRuntimeShape
,
"Skip calling InferShape() function in the runtime."
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
FusedEmbeddingSeqPool Operator.
...
...
@@ -137,22 +138,20 @@ class FusedEmbeddingSeqPoolOpGrad : public framework::OperatorWithKernel {
class
FusedEmbeddingSeqPoolOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
out_var_name
=
ctx
->
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
attr
=
ctx
->
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"fused_embedding_seq_pool_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
)
<<
"fused_embedding_seq_pool_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
out_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
(
));
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
ctx
->
Input
(
"W"
)[
0
]
));
}
};
...
...
paddle/fluid/operators/get_tensor_from_selected_rows_op.cc
浏览文件 @
27f7a726
...
...
@@ -81,15 +81,12 @@ GetTensorFromSelectedRows is used to get the tensor from SelectedRows.
class
GetTensorFromSelectedRowsOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
final
{
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
in_var_name
=
op_desc
.
Input
(
"X"
).
front
();
auto
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
auto
in_var
=
block
->
FindRecursiveOrCreateVar
(
in_var_name
);
out_var
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
out_var
.
SetDataType
(
in_var
.
GetDataType
());
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
{
// NOLINT
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
auto
in_var_name
=
ctx
->
Input
(
"X"
).
front
();
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
in_var_name
));
}
};
...
...
paddle/fluid/operators/hash_op.cc
浏览文件 @
27f7a726
...
...
@@ -54,7 +54,8 @@ $$Out = scale * X$$
)DOC"
);
AddAttr
<
int
>
(
"num_hash"
,
""
).
SetDefault
(
1
);
AddAttr
<
int
>
(
"mod_by"
,
""
).
SetDefault
(
100000
);
AddAttr
<
bool
>
(
framework
::
kAllKernelsMustComputeRuntimeShape
,
""
)
AddAttr
<
bool
>
(
framework
::
kAllKernelsMustComputeRuntimeShape
,
"Skip calling InferShape() function in the runtime."
)
.
SetDefault
(
true
);
}
};
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
27f7a726
...
...
@@ -197,38 +197,32 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
class
HierarchicalSigmoidGradOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
w_grad_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
bias_grad_var_name_vec
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
));
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
w_grad_var_name
=
ctx
->
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
bias_grad_var_name_vec
=
ctx
->
Output
(
framework
::
GradVarName
(
"Bias"
));
std
::
string
bias_grad_var_name
;
bool
hasBias
=
false
;
if
(
bias_grad_var_name_vec
.
size
())
{
hasBias
=
true
;
bias_grad_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
bias_grad_var_name
=
ctx
->
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
}
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
auto
attr
=
ctx
->
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
ctx
->
SetType
(
w_grad_var_name
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
w_grad_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
bias_grad_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
w_grad_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
(
));
ctx
->
SetDataType
(
w_grad_var_name
,
ctx
->
GetDataType
(
ctx
->
Input
(
"W"
)[
0
]
));
}
};
...
...
paddle/fluid/operators/lod_rank_table_op.cc
浏览文件 @
27f7a726
...
...
@@ -64,11 +64,9 @@ class LoDRankTableInferShape : public framework::InferShapeBase {
class
LoDRankTableInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o
:
op_desc
.
Output
(
"Out"
))
{
block
->
FindRecursiveOrCreateVar
(
o
).
SetType
(
framework
::
proto
::
VarType
::
LOD_RANK_TABLE
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
o
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
o
,
framework
::
proto
::
VarType
::
LOD_RANK_TABLE
);
}
}
};
...
...
paddle/fluid/operators/lod_tensor_to_array_op.cc
浏览文件 @
27f7a726
...
...
@@ -201,10 +201,9 @@ class LoDTensorToArrayInferShape : public framework::InferShapeBase {
class
LoDTensorToArrayInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
out_var
:
op_desc
.
Output
(
"Out"
))
{
block
->
Var
(
out_var
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
out_var
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
out_var
,
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
}
}
};
...
...
paddle/fluid/operators/lookup_table_op.cc
浏览文件 @
27f7a726
...
...
@@ -147,22 +147,20 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
class
LookupTableOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
out_var_name
=
ctx
->
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
attr
=
ctx
->
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"lookup_table_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
)
<<
"lookup_table_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
out_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
(
));
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
ctx
->
Input
(
"W"
)[
0
]
));
}
};
...
...
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
浏览文件 @
27f7a726
...
...
@@ -592,6 +592,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
platform
::
SetDstMemoryHandler
<
uint8_t
>
(
ctx
,
output
,
handler
,
&
dst_memory_p
);
}
else
{
need_s8_to_u8
=
fuse_relu
;
platform
::
SetDstMemoryHandler
<
int8_t
>
(
ctx
,
output
,
handler
,
&
dst_memory_p
);
}
...
...
paddle/fluid/operators/mkldnn/fc_mkldnn_op.cc
浏览文件 @
27f7a726
...
...
@@ -123,7 +123,7 @@ class FCMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
input
=
ctx
.
Input
<
framework
::
LoD
Tensor
>
(
"Input"
);
auto
w
=
ctx
.
Input
<
Tensor
>
(
"W"
);
auto
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
...
...
@@ -151,7 +151,13 @@ class FCMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
w_data
=
w
->
data
<
T
>
();
auto
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
output
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
int
in_num_col_dims
=
ctx
.
Attr
<
int
>
(
"in_num_col_dims"
);
std
::
vector
<
int64_t
>
output_dims
;
FCOutputSize
(
input
->
dims
(),
w
->
dims
(),
output_dims
,
in_num_col_dims
);
output
->
Resize
(
framework
::
make_ddim
(
output_dims
));
output
->
set_lod
(
input
->
lod
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dst_memory
=
mem
.
dst
(
output_data
);
...
...
@@ -204,19 +210,21 @@ class FCMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
Tensor
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
w_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"W"
));
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
Tensor
*
w
=
ctx
.
Input
<
Tensor
>
(
"W"
);
const
T
*
w_data
=
w
->
data
<
T
>
();
if
(
input_grad
)
{
input_grad
->
Resize
(
input
->
dims
());
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
w_grad
)
{
w_grad
->
Resize
(
w
->
dims
());
w_grad_data
=
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
Tensor
*
w
=
ctx
.
Input
<
Tensor
>
(
"W"
);
const
T
*
w_data
=
w
->
data
<
T
>
();
const
Tensor
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
...
...
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
浏览文件 @
27f7a726
...
...
@@ -73,6 +73,29 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
};
template
<
typename
T
>
class
TransposeINT8MKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
std
::
vector
<
int
>
axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
std
::
vector
<
int
>
axis_int8
=
{
0
,
2
,
3
,
1
};
if
(
axis
.
size
()
!=
1
)
{
PADDLE_ENFORCE_EQ
(
axis
.
size
(),
axis_int8
.
size
());
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
PADDLE_ENFORCE_EQ
(
axis
[
i
],
axis_int8
[
i
],
"Current INT8 MKLDNN Transpose kernel only surpport "
"axis with [0, 2, 3, 1] due to MKL-DNN kernel "
"implementation."
);
}
}
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
output
->
ShareDataWith
(
*
input
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
input
->
format
());
}
};
template
<
typename
T
>
class
TransposeMKLDNNGradOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -140,7 +163,10 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
transpose2
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
TransposeMKLDNNOpKernel
<
float
>
);
ops
::
TransposeMKLDNNOpKernel
<
float
>
,
ops
::
TransposeINT8MKLDNNOpKernel
<
uint8_t
>
,
ops
::
TransposeINT8MKLDNNOpKernel
<
int8_t
>
);
REGISTER_OP_KERNEL
(
transpose
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
TransposeMKLDNNOpKernel
<
float
>
);
...
...
paddle/fluid/operators/nccl/nccl_op.cc
浏览文件 @
27f7a726
...
...
@@ -60,12 +60,9 @@ class NCCLInitOp : public framework::OperatorBase {
class
NCCLInitOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
"Communicator"
).
front
();
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
auto
var_type
=
framework
::
proto
::
VarType
::
RAW
;
out_var
.
SetType
(
var_type
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
out_var_name
=
ctx
->
Output
(
"Communicator"
).
front
();
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
RAW
);
}
};
...
...
paddle/fluid/operators/nce_op.cc
浏览文件 @
27f7a726
...
...
@@ -237,23 +237,21 @@ class NCEOpGrad : public framework::OperatorWithKernel {
class
NCEOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
weight_grad
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Weight"
)).
front
();
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
weight_grad
=
ctx
->
Output
(
framework
::
GradVarName
(
"Weight"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
auto
attr
=
ctx
->
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
" is set to SelectedRows"
;
block
->
Var
(
weight_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
ctx
->
SetType
(
weight_grad
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
" is set to LoDTensor"
;
block
->
Var
(
weight_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
weight_grad
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
weight_grad
)
->
SetDataType
(
block
->
Var
(
"Input"
)
->
GetDataType
(
));
ctx
->
SetDataType
(
weight_grad
,
ctx
->
GetDataType
(
ctx
->
Input
(
"Input"
)[
0
]
));
}
};
...
...
paddle/fluid/operators/ngraph/ngraph_engine_op.cc
浏览文件 @
27f7a726
...
...
@@ -37,8 +37,7 @@ class NgraphEngineOpMaker : public framework::OpProtoAndCheckerMaker {
class
NgraphEngineInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
}
// namespace operators
...
...
paddle/fluid/operators/optimizers/adam_op.h
浏览文件 @
27f7a726
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <math.h> // for sqrt in CPU and CUDA
#include <Eigen/Dense>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/threadpool.h"
...
...
@@ -311,17 +312,17 @@ struct SparseAdamFunctor<T, CPUAdam> {
T
beta1_pow
=
*
beta1_pow_
;
T
beta2_pow
=
*
beta2_pow_
;
lr
*=
sqrt
(
1
-
beta2_pow
)
/
(
1
-
beta1_pow
);
size_t
row_count
=
numel
/
row_numel_
;
int64_t
row_count
=
static_cast
<
int64_t
>
(
numel
/
row_numel_
)
;
for
(
size_t
i
=
0U
,
j
=
0U
;
i
!=
row_count
;
++
i
)
{
for
(
int64_t
i
=
0
,
j
=
0
;
i
!=
row_count
;
++
i
)
{
if
(
i
==
*
(
rows_
+
j
))
{
for
(
size_t
k
=
0U
;
k
!=
row_numel_
;
++
k
)
{
for
(
int64_t
k
=
0
;
k
!=
row_numel_
;
++
k
)
{
T
g
=
grad_
[
j
*
row_numel_
+
k
];
adam_update
(
i
*
row_numel_
+
k
,
g
);
}
++
j
;
}
else
{
for
(
size_t
k
=
0U
;
k
!=
row_numel_
;
++
k
)
{
for
(
int64_t
k
=
0
;
k
!=
row_numel_
;
++
k
)
{
T
mom1
=
moment1_
[
i
*
row_numel_
+
k
];
T
mom2
=
moment2_
[
i
*
row_numel_
+
k
];
T
p
=
param_
[
i
*
row_numel_
+
k
];
...
...
@@ -427,43 +428,23 @@ class AdamOpKernel : public framework::OpKernel<T> {
}
}
framework
::
SelectedRows
cpu
_grad_merge
;
framework
::
SelectedRows
tmp
_grad_merge
;
const
framework
::
SelectedRows
*
grad_merge_ptr
;
if
(
is_strict_sorted
)
{
grad_merge_ptr
=
&
grad
;
}
else
{
// merge duplicated rows if any.
// The rows of grad_merge have been sorted inside MergeAdd functor
framework
::
SelectedRows
*
grad_merge_var
;
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
grad_merge_var
=
&
cpu_grad_merge
;
}
else
{
// FIXME(qiao): GPU also need to fix this
grad_merge_var
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
()
->
GetMutable
<
framework
::
SelectedRows
>
();
}
merge_func
(
ctx
.
template
device_context
<
DeviceContext
>(),
grad
,
grad_merge_var
,
true
);
grad_merge_ptr
=
grad_merge_var
;
&
tmp_grad_merge
,
true
);
grad_merge_ptr
=
&
tmp_grad_merge
;
}
auto
&
grad_merge
=
*
grad_merge_ptr
;
auto
&
grad_tensor
=
grad_merge
.
value
();
const
T
*
grad_data
=
grad_tensor
.
template
data
<
T
>();
const
int64_t
*
rows
=
nullptr
;
// When compiled without CUDA, the CUDAData() interface should not be
// provided.
#if defined(PADDLE_WITH_CUDA)
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
rows
=
grad_merge
.
rows
().
CUDAData
(
ctx
.
GetPlace
());
}
else
{
#endif
rows
=
grad_merge
.
rows
().
data
();
#if defined(PADDLE_WITH_CUDA)
}
#endif
const
int64_t
*
rows
=
grad_merge
.
rows
().
Data
(
ctx
.
GetPlace
());
auto
row_numel
=
grad_tensor
.
numel
()
/
grad_merge
.
rows
().
size
();
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
...
...
@@ -488,7 +469,7 @@ class AdamOpKernel : public framework::OpKernel<T> {
}
}
#ifndef _WIN32
else
if
(
FLAGS_inner_op_parallelism
>
1
&&
else
if
(
FLAGS_inner_op_parallelism
>
1
&&
// NOLINT
min_row_size_to_use_multithread
>
0
&&
param
.
dims
()[
0
]
>
min_row_size_to_use_multithread
)
{
VLOG
(
3
)
<<
"use multi thread, inner_op_parallelism="
...
...
@@ -516,11 +497,11 @@ class AdamOpKernel : public framework::OpKernel<T> {
for
(
int
i
=
0
;
i
<
FLAGS_inner_op_parallelism
;
++
i
)
{
int64_t
start
=
i
*
line_in_each_thread
;
int64_t
end
=
(
i
+
1
)
*
line_in_each_thread
;
if
(
start
>=
param_row_count
)
{
if
(
start
>=
static_cast
<
int64_t
>
(
param_row_count
)
)
{
break
;
}
if
(
end
>
param_row_count
)
{
end
=
param_row_count
;
if
(
end
>
static_cast
<
int64_t
>
(
param_row_count
)
)
{
end
=
static_cast
<
int64_t
>
(
param_row_count
)
;
}
fs
.
push_back
(
framework
::
Async
([
&
functor
,
&
row_id_to_grad_row_offset
,
...
...
@@ -545,8 +526,8 @@ class AdamOpKernel : public framework::OpKernel<T> {
}
for
(
size_t
i
=
0
;
i
<
fs
.
size
();
++
i
)
fs
[
i
].
wait
();
}
#endif // !_WIN32
else
{
#endif
// !_WIN32
else
{
// NOLINT
functor
(
param
.
numel
());
}
}
else
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
...
...
paddle/fluid/operators/optimizers/lars_momentum_op.cc
浏览文件 @
27f7a726
...
...
@@ -56,9 +56,9 @@ This optimizer use LARS (https://arxiv.org/abs/1708.03888) to optimize each
weight using a local learning rate:
$$
local\_lr = \eta *
local\_lr = \eta *
\frac{\left \| param \right \|}{\left \| grad \right \| + \beta *\left \| param \right \|} \\
velocity = mu * velocity +
velocity = mu * velocity +
local\_lr * (grad + \beta * param) \\
param = param - velocity. \\
$$
...
...
@@ -72,8 +72,7 @@ use L2 regularizers in case of using LARS.
class
LarsMomentumOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/optimizers/momentum_op.cc
浏览文件 @
27f7a726
...
...
@@ -21,18 +21,14 @@ using Tensor = framework::Tensor;
class
MomentumOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
input_var
=
op_desc
.
Input
(
"Param"
)[
0
];
for
(
auto
&
out_var
:
op_desc
.
Output
(
"ParamOut"
))
{
if
(
block
->
FindRecursiveOrCreateVar
(
input_var
).
GetType
()
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
if
(
block
->
FindRecursiveOrCreateVar
(
input_var
).
GetType
()
==
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
input_var
=
ctx
->
Input
(
"Param"
)[
0
];
for
(
auto
&
out_var
:
ctx
->
Output
(
"ParamOut"
))
{
if
(
ctx
->
GetType
(
input_var
)
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
ctx
->
SetType
(
out_var
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
if
(
ctx
->
GetType
(
input_var
)
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
out_var
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
else
{
PADDLE_THROW
(
"Only support LodTensor and SelectedRows, Unexpected Input Type."
);
...
...
paddle/fluid/operators/optimizers/momentum_op.h
浏览文件 @
27f7a726
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -69,6 +70,7 @@ class MomentumOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"VelocityOut"
,
param_dim
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"Param"
));
...
...
@@ -351,23 +353,14 @@ class MomentumOpKernel : public framework::OpKernel<T> {
VLOG
(
3
)
<<
"Grad SelectedRows contains no data!"
;
return
;
}
auto
*
merged_grad
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
()
->
GetMutable
<
framework
::
SelectedRows
>
()
;
framework
::
SelectedRows
tmp_merged_grad
;
framework
::
SelectedRows
*
merged_grad
=
&
tmp_merged_grad
;
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
merge_func
(
ctx
.
template
device_context
<
DeviceContext
>(),
*
grad
,
merged_grad
);
const
int64_t
*
rows
=
nullptr
;
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
rows
=
merged_grad
->
rows
().
CUDAData
(
ctx
.
GetPlace
());
}
else
{
#endif
rows
=
merged_grad
->
rows
().
data
();
#ifdef PADDLE_WITH_CUDA
}
#endif
const
int64_t
*
rows
=
merged_grad
->
rows
().
Data
(
ctx
.
GetPlace
());
int64_t
row_numel
=
merged_grad
->
value
().
numel
()
/
merged_grad
->
rows
().
size
();
platform
::
ForRange
<
DeviceContext
>
for_range
(
...
...
paddle/fluid/operators/optimizers/rmsprop_op.h
浏览文件 @
27f7a726
...
...
@@ -216,24 +216,14 @@ class RmspropOpKernel : public framework::OpKernel<T> {
}
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
grad
=
grad_var
->
Get
<
framework
::
SelectedRows
>
();
auto
*
merged_grad
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
()
->
GetMutable
<
framework
::
SelectedRows
>
();
framework
::
SelectedRows
tmp_merged_grad
;
framework
::
SelectedRows
*
merged_grad
=
&
tmp_merged_grad
;
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
merge_func
(
dev_ctx
,
grad
,
merged_grad
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
limit
);
const
int64_t
*
rows
;
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
rows
=
merged_grad
->
rows
().
CUDAData
(
ctx
.
GetPlace
());
}
else
{
#endif
rows
=
merged_grad
->
rows
().
data
();
#ifdef PADDLE_WITH_CUDA
}
#endif
const
int64_t
*
rows
=
merged_grad
->
rows
().
Data
(
ctx
.
GetPlace
());
auto
&
merged_tensor
=
merged_grad
->
value
();
int64_t
row_count
=
merged_grad
->
rows
().
size
();
int64_t
row_numel
=
merged_tensor
.
numel
()
/
row_count
;
...
...
paddle/fluid/operators/optimizers/sgd_op.cc
浏览文件 @
27f7a726
...
...
@@ -50,20 +50,18 @@ class SGDOp : public framework::OperatorWithKernel {
class
SGDOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
input_var_n
=
op_desc
.
Input
(
"Param"
)[
0
];
auto
in_var_type
=
block
->
FindRecursiveOrCreateVar
(
input_var_n
).
GetType
();
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
input_var_n
=
ctx
->
Input
(
"Param"
)[
0
];
auto
in_var_type
=
ctx
->
GetType
(
input_var_n
);
PADDLE_ENFORCE
(
in_var_type
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
||
in_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input Var's type should be LoDtensor or SelectedRows,"
" but the received var(%s)'s type is %s"
,
input_var_n
,
in_var_type
);
for
(
auto
&
out_var_n
:
op_desc
.
Output
(
"ParamOut"
))
{
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_n
);
if
(
out_var
.
GetType
()
!=
in_var_type
)
{
out_var
.
SetType
(
in_var_type
);
for
(
auto
&
out_var_n
:
ctx
->
Output
(
"ParamOut"
))
{
if
(
ctx
->
GetType
(
out_var_n
)
!=
in_var_type
)
{
ctx
->
SetType
(
out_var_n
,
in_var_type
);
}
}
}
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
27f7a726
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/pool_op.h"
#include <unordered_map>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
...
...
@@ -212,6 +213,12 @@ void Pool2dOpMaker::Make() {
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_quantizer"
,
"(bool, default false) "
"Set to true for operators that should be quantized and use "
"int8 kernel. "
"Only used on CPU."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
...
...
paddle/fluid/operators/py_func_op.cc
浏览文件 @
27f7a726
...
...
@@ -14,8 +14,11 @@
#include "paddle/fluid/operators/py_func_op.h"
#include <memory>
#include <set>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -91,15 +94,12 @@ static void CallPythonFunc(py::object *callable,
}
}
class
PyFuncOpVarTypInference
:
public
framework
::
VarTypeInference
{
class
PyFuncOpVarTyp
e
Inference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
&
outs
=
op
.
Outputs
();
bool
has_out
=
(
outs
.
count
(
"Out"
)
>
0
&&
!
outs
.
at
(
"Out"
).
empty
());
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
bool
has_out
=
(
ctx
->
HasOutput
(
"Out"
)
&&
!
ctx
->
Output
(
"Out"
).
empty
());
auto
&
ins
=
op
.
Inputs
();
bool
has_in
=
(
ins
.
count
(
"X"
)
>
0
&&
!
ins
.
at
(
"X"
).
empty
());
bool
has_in
=
(
ctx
->
HasInput
(
"X"
)
&&
!
ctx
->
Input
(
"X"
).
empty
());
/**
* X or Out can be empty, so that py_func can be more flexible
...
...
@@ -107,8 +107,8 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
*/
PADDLE_ENFORCE
(
has_in
||
has_out
,
"Input(X) or Output(Out) must exist"
);
PADDLE_ENFORCE_GE
(
boost
::
get
<
int
>
(
op
.
GetAttr
(
kForwardPythonCallableId
)),
0
,
"Function id cannot be less than 0"
);
PADDLE_ENFORCE_GE
(
boost
::
get
<
int
>
(
ctx
->
GetAttr
(
kForwardPythonCallableId
))
,
0
,
"Function id cannot be less than 0"
);
if
(
!
has_out
)
return
;
...
...
@@ -118,7 +118,7 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
* the corresponding forward variable
*/
const
std
::
string
kGradVarSuffix
=
framework
::
kGradVarSuffix
;
auto
&
out_var_names
=
outs
.
a
t
(
"Out"
);
auto
&
out_var_names
=
ctx
->
Outpu
t
(
"Out"
);
for
(
auto
&
out_var_name
:
out_var_names
)
{
if
(
out_var_name
==
framework
::
kEmptyVarName
||
out_var_name
.
size
()
<
kGradVarSuffix
.
size
())
{
...
...
@@ -128,18 +128,17 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
size_t
len
=
out_var_name
.
size
()
-
kGradVarSuffix
.
size
();
if
(
out_var_name
.
substr
(
len
)
==
kGradVarSuffix
)
{
auto
fwd_var_name
=
out_var_name
.
substr
(
0
,
len
);
auto
*
out_var_desc
=
block
->
FindVarRecursive
(
out_var_name
);
auto
*
fwd_var_desc
=
block
->
FindVarRecursive
(
fwd_var_name
);
PADDLE_ENFORCE_NOT_NULL
(
out_var_desc
,
"Backward variable %s not found"
,
out_var_name
);
PADDLE_ENFORCE_NOT_NULL
(
fwd_var_desc
,
"Forward variable %s not found"
,
fwd_var_name
);
PADDLE_ENFORCE
(
ctx
->
HasVar
(
out_var_name
),
"Backward variable %s not found"
,
out_var_name
);
PADDLE_ENFORCE
(
ctx
->
HasVar
(
fwd_var_name
),
"Backward variable %s not found"
,
fwd_var_name
);
VLOG
(
10
)
<<
"Infer var_desc of Output("
<<
out_var_name
<<
") as Input("
<<
fwd_var_name
<<
")"
;
out_var_desc
->
SetShape
(
fwd_var_desc
->
GetShape
());
out_var_desc
->
SetDataType
(
fwd_var_desc
->
GetDataType
());
out_var_desc
->
SetLoDLevel
(
fwd_var_desc
->
GetLoDLevel
());
out_var_desc
->
SetType
(
fwd_var_desc
->
GetType
());
ctx
->
SetShape
(
out_var_name
,
ctx
->
GetShape
(
fwd_var_name
));
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
fwd_var_name
));
ctx
->
SetLoDLevel
(
out_var_name
,
ctx
->
GetLoDLevel
(
fwd_var_name
));
ctx
->
SetType
(
out_var_name
,
ctx
->
GetType
(
fwd_var_name
));
}
}
}
...
...
@@ -309,5 +308,5 @@ class PyFuncOp : public framework::OperatorBase {
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
py_func
,
ops
::
PyFuncOp
,
ops
::
PyFuncOpMaker
,
ops
::
PyFuncOpVarTypInference
,
ops
::
PyFuncOpShapeInference
,
ops
::
PyFuncOpVarTyp
e
Inference
,
ops
::
PyFuncOpShapeInference
,
ops
::
PyFuncOpGradDescMaker
);
paddle/fluid/operators/reader/create_custom_reader_op.cc
浏览文件 @
27f7a726
...
...
@@ -85,10 +85,10 @@ class CreateCustomReaderOpMaker : public DecoratedReaderMakerBase {
AddComment
(
R"DOC(
CreateCustomReader Operator
A custom reader can be used for input data preprocessing.
A custom reader holds its own sub-block, which will be executed in CPU
in its 'ReadNext()' function. Users can configurate their own
preprocessing pipelines by inserting operators into custom reader's
A custom reader can be used for input data preprocessing.
A custom reader holds its own sub-block, which will be executed in CPU
in its 'ReadNext()' function. Users can configurate their own
preprocessing pipelines by inserting operators into custom reader's
sub-block.
)DOC"
);
}
...
...
@@ -123,23 +123,22 @@ class CustomReaderInferShape : public framework::InferShapeBase {
class
CustomReaderInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
framework
::
VarDesc
*
out_reader
=
block
->
FindVar
(
op_desc
.
Output
(
"Out"
)[
0
]);
PADDLE_ENFORCE_NOT_NULL
(
out_reader
);
out_reader
->
SetType
(
framework
::
proto
::
VarType
::
READER
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
out_var_name
=
ctx
->
Output
(
"Out"
)[
0
];
PADDLE_ENFORCE
(
ctx
->
HasVar
(
out_var_name
));
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
READER
);
auto
sink_var_names
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
op_desc
.
GetAttr
(
"sink_var_names"
));
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
ctx
->
GetAttr
(
"sink_var_names"
));
const
auto
*
sub_block
=
boost
::
get
<
framework
::
BlockDesc
*>
(
op_desc
.
GetAttr
(
"sub_block"
));
boost
::
get
<
framework
::
BlockDesc
*>
(
ctx
->
GetAttr
(
"sub_block"
));
std
::
vector
<
framework
::
proto
::
VarType
::
Type
>
res_data_types
;
for
(
const
std
::
string
&
var_name
:
sink_var_names
)
{
framework
::
VarDesc
*
var
=
sub_block
->
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
res_data_types
.
emplace_back
(
var
->
GetDataType
());
}
out_reader
->
SetDataTypes
(
res_data_types
);
ctx
->
SetDataTypes
(
out_var_name
,
res_data_types
);
}
};
...
...
paddle/fluid/operators/reader/read_op.cc
浏览文件 @
27f7a726
...
...
@@ -51,19 +51,16 @@ class ReadInferShape : public framework::InferShapeBase {
class
ReadInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
bool
infer_out
=
boost
::
get
<
bool
>
(
op_desc
.
GetAttr
(
"infer_out"
));
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
bool
infer_out
=
boost
::
get
<
bool
>
(
ctx
->
GetAttr
(
"infer_out"
));
if
(
infer_out
)
{
std
::
string
reader_name
=
op_desc
.
Input
(
"Reader"
)[
0
];
std
::
vector
<
std
::
string
>
out_names
=
op_desc
.
Output
(
"Out"
);
framework
::
VarDesc
*
reader
=
block
->
FindVarRecursive
(
reader_name
);
auto
dtypes
=
reader
->
GetDataTypes
();
std
::
string
reader_name
=
ctx
->
Input
(
"Reader"
)[
0
];
std
::
vector
<
std
::
string
>
out_names
=
ctx
->
Output
(
"Out"
);
auto
dtypes
=
ctx
->
GetDataTypes
(
reader_name
);
PADDLE_ENFORCE_EQ
(
dtypes
.
size
(),
out_names
.
size
());
for
(
size_t
i
=
0
;
i
<
dtypes
.
size
();
++
i
)
{
framework
::
VarDesc
&
out
=
block
->
FindRecursiveOrCreateVar
(
out_names
[
i
]);
out
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
out
.
SetDataType
(
dtypes
[
i
]);
ctx
->
SetType
(
out_names
[
i
],
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetDataType
(
out_names
[
i
],
dtypes
[
i
]);
}
}
}
...
...
paddle/fluid/operators/reader/reader_op_registry.cc
浏览文件 @
27f7a726
...
...
@@ -98,11 +98,10 @@ void FileReaderInferShape::operator()(framework::InferShapeContext* ctx) const {
}
}
void
FileReaderInferVarType
::
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
{
std
::
string
reader_name
=
op_desc
.
Output
(
"Out"
)[
0
];
framework
::
VarDesc
*
reader
=
block
->
FindVarRecursive
(
reader_name
);
reader
->
SetType
(
framework
::
proto
::
VarType
::
READER
);
void
FileReaderInferVarType
::
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
{
std
::
string
reader_name
=
ctx
->
Output
(
"Out"
)[
0
];
ctx
->
SetType
(
reader_name
,
framework
::
proto
::
VarType
::
READER
);
}
void
DecoratedReaderInferShape
::
operator
()(
...
...
@@ -125,13 +124,11 @@ void DecoratedReaderInferShape::operator()(
}
void
DecoratedReaderInferVarType
::
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
{
std
::
string
in_reader_name
=
op_desc
.
Input
(
"UnderlyingReader"
)[
0
];
framework
::
VarDesc
*
in_reader
=
block
->
FindVarRecursive
(
in_reader_name
);
std
::
string
out_reader_name
=
op_desc
.
Output
(
"Out"
)[
0
];
framework
::
VarDesc
*
out_reader
=
block
->
FindVarRecursive
(
out_reader_name
);
out_reader
->
SetType
(
framework
::
proto
::
VarType
::
READER
);
out_reader
->
SetDataTypes
(
in_reader
->
GetDataTypes
());
framework
::
InferVarTypeContext
*
ctx
)
const
{
const
std
::
string
&
in_reader_name
=
ctx
->
Input
(
"UnderlyingReader"
)[
0
];
const
std
::
string
&
out_reader_name
=
ctx
->
Output
(
"Out"
)[
0
];
ctx
->
SetType
(
out_reader_name
,
framework
::
proto
::
VarType
::
READER
);
ctx
->
SetDataTypes
(
out_reader_name
,
ctx
->
GetDataTypes
(
in_reader_name
));
}
void
DecoratedReaderMakerBase
::
Make
()
{
...
...
paddle/fluid/operators/reader/reader_op_registry.h
浏览文件 @
27f7a726
...
...
@@ -14,7 +14,9 @@
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
...
...
@@ -59,8 +61,7 @@ class FileReaderInferShape : public framework::InferShapeBase {
class
FileReaderInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
;
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
;
};
// general infershape for decorated reader
...
...
@@ -72,8 +73,7 @@ class DecoratedReaderInferShape : public framework::InferShapeBase {
// general var type inference for decorated reader
class
DecoratedReaderInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
;
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
;
};
class
DecoratedReaderMakerBase
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
paddle/fluid/operators/save_op.cc
浏览文件 @
27f7a726
...
...
@@ -159,12 +159,9 @@ This operator will serialize and write LoDTensor / SelectedRows variable to file
class
SaveOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
LOOKUP_TABLE_PATH
).
front
();
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
auto
var_type
=
framework
::
proto
::
VarType
::
RAW
;
out_var
.
SetType
(
var_type
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
out_var_name
=
ctx
->
Output
(
LOOKUP_TABLE_PATH
).
front
();
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
RAW
);
}
};
...
...
paddle/fluid/operators/scale_op.cc
浏览文件 @
27f7a726
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/scale_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/operators/detail/safe_ref.h"
...
...
@@ -69,17 +70,13 @@ $$Out = scale*(X + bias)$$
class
ScaleOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
&
in_var_name
=
op_desc
.
Input
(
"X"
).
front
();
auto
&
in_var
=
detail
::
Ref
(
block
->
FindVarRecursive
(
in_var_name
));
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
*
out_var
=
block
->
FindVarRecursive
(
out_var_name
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
in_var_name
=
ctx
->
Input
(
"X"
).
front
();
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
if
(
in_var_name
!=
out_var_name
)
{
out_var
->
SetType
(
in_var
.
GetType
(
));
out_var
->
SetDataType
(
in_var
.
GetDataType
(
));
ctx
->
SetType
(
out_var_name
,
ctx
->
GetType
(
in_var_name
));
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
in_var_name
));
}
}
};
...
...
paddle/fluid/operators/sequence_ops/sequence_enumerate_op.cc
浏览文件 @
27f7a726
...
...
@@ -59,7 +59,8 @@ class SequenceEnumerateOpMaker : public framework::OpProtoAndCheckerMaker {
});
AddAttr
<
int
>
(
"pad_value"
,
"(int) The enumerate sequence padding value."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
framework
::
kAllKernelsMustComputeRuntimeShape
,
""
)
AddAttr
<
bool
>
(
framework
::
kAllKernelsMustComputeRuntimeShape
,
"Skip calling InferShape() function in the runtime."
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
Sequence Enumerate Operator.
...
...
paddle/fluid/operators/slice_op.cu
浏览文件 @
27f7a726
...
...
@@ -31,18 +31,18 @@ __global__ void Padding(const paddle::platform::float16* d_out,
paddle
::
platform
::
float16
*
d_in
)
{
int64_t
out_idx
=
threadIdx
.
x
+
blockDim
.
x
*
blockIdx
.
x
;
if
(
out_idx
<
n
)
{
int64_t
out_idx_tmp
=
out_idx
;
int
coords
[
D
]
=
{
0
};
for
(
int
i
=
D
-
1
;
i
>=
0
;
--
i
)
{
coords
[
i
]
=
out_idx
%
out_dims
[
i
];
out_idx
/=
out_dims
[
i
];
coords
[
i
]
=
out_idx
_tmp
%
out_dims
[
i
];
out_idx
_tmp
/=
out_dims
[
i
];
coords
[
i
]
+=
offsets
[
i
];
}
int64_t
in_idx
=
0
;
for
(
int
i
=
0
;
i
<
D
-
1
;
++
i
)
{
in_idx
+=
coords
[
i
]
*
in_dims
[
i
+
1
];
for
(
int
i
=
0
;
i
<
D
;
++
i
)
{
in_idx
=
in_idx
*
in_dims
[
i
]
+
coords
[
i
];
}
in_idx
+=
coords
[
D
-
1
];
d_in
[
in_idx
]
=
d_out
[
out_idx
];
}
...
...
@@ -80,8 +80,8 @@ class SliceGradKernel<paddle::platform::CUDADeviceContext,
set_zero
(
dev_ctx
,
d_in
,
static_cast
<
paddle
::
platform
::
float16
>
(
0
));
int64_t
numel
=
d_out
->
numel
();
dim3
blocks
((
numel
-
1
)
/
PADDLE_CUDA_NUM_THREADS
+
1
,
1
,
1
);
dim3
threads
(
PADDLE_CUDA_NUM_THREADS
,
1
,
1
);
dim3
blocks
((
numel
-
1
)
/
PADDLE_CUDA_NUM_THREADS
+
1
);
dim3
threads
(
PADDLE_CUDA_NUM_THREADS
);
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
auto
out_shape
=
framework
::
vectorize2int
(
out_dims
);
...
...
paddle/fluid/operators/softmax_with_cross_entropy_op.cu
浏览文件 @
27f7a726
...
...
@@ -439,7 +439,8 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel<T> {
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
))
->
data
<
T
>
();
Tensor
*
logit_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
logit_grad
->
ShareDataWith
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
));
framework
::
TensorCopy
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
),
context
.
GetPlace
(),
context
.
device_context
(),
logit_grad
);
T
*
logit_grad_data
=
logit_grad
->
data
<
T
>
();
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
...
...
paddle/fluid/operators/split_selected_rows_op.cc
浏览文件 @
27f7a726
...
...
@@ -14,6 +14,8 @@ limitations under the License. */
#include "paddle/fluid/operators/split_selected_rows_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -60,10 +62,9 @@ class SplitSelectedRowsOp : public framework::OperatorWithKernel {
class
SplitSelectedRowsOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
out_var
:
op_desc
.
Output
(
"Out"
))
{
block
->
Var
(
out_var
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
out_var
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
out_var
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
}
};
...
...
paddle/fluid/operators/squeeze_op.cc
浏览文件 @
27f7a726
...
...
@@ -94,6 +94,7 @@ class SqueezeOpInferShape : public framework::InferShapeBase {
}
};
// TODO(paddle-dev): Should use OpKernel.
class
SqueezeOp
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
...
...
paddle/fluid/operators/sum_op.cc
浏览文件 @
27f7a726
...
...
@@ -12,6 +12,7 @@ limitations under the License. */
#include "paddle/fluid/operators/sum_op.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
...
...
@@ -159,24 +160,20 @@ the LoD information with the first input.
class
SumOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
inputs
=
ctx
->
Input
(
"X"
);
auto
var_type
=
framework
::
proto
::
VarType
::
SELECTED_ROWS
;
for
(
auto
&
name
:
op_desc
.
Input
(
"X"
))
{
VLOG
(
10
)
<<
name
<<
" "
<<
block
->
FindRecursiveOrCreateVar
(
name
).
GetType
();
for
(
auto
&
name
:
ctx
->
Input
(
"X"
))
{
VLOG
(
10
)
<<
name
<<
" "
<<
ctx
->
GetType
(
name
);
}
bool
any_input_is_lod_tensor
=
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
block
](
const
std
::
string
&
name
)
{
return
block
->
FindRecursiveOrCreateVar
(
name
).
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
;
inputs
.
begin
(),
inputs
.
end
(),
[
ctx
](
const
std
::
string
&
name
)
{
return
ctx
->
GetType
(
name
)
==
framework
::
proto
::
VarType
::
LOD_TENSOR
;
});
auto
is_tensor_array
=
[
block
](
const
std
::
string
&
name
)
{
return
block
->
FindRecursiveOrCreateVar
(
name
).
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
;
auto
is_tensor_array
=
[
ctx
](
const
std
::
string
&
name
)
{
return
ctx
->
GetType
(
name
)
==
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
;
};
bool
any_input_is_tensor_array
=
...
...
@@ -188,8 +185,7 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
if
(
!
all_inputs_are_tensor_array
)
{
std
::
ostringstream
os
;
for
(
auto
&
each
:
inputs
)
{
os
<<
" "
<<
each
<<
" type is "
<<
block
->
FindRecursiveOrCreateVar
(
each
).
GetType
()
<<
"
\n
"
;
os
<<
" "
<<
each
<<
" type is "
<<
ctx
->
GetType
(
each
)
<<
"
\n
"
;
}
PADDLE_ENFORCE
(
all_inputs_are_tensor_array
,
"Not all inputs are tensor array:
\n
%s"
,
os
.
str
());
...
...
@@ -199,11 +195,9 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
var_type
=
framework
::
proto
::
VarType
::
LOD_TENSOR
;
}
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
out_var
.
SetType
(
var_type
);
auto
&
in_var
=
detail
::
Ref
(
block
->
FindVarRecursive
(
inputs
.
front
()));
out_var
.
SetDataType
(
in_var
.
GetDataType
());
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
ctx
->
SetType
(
out_var_name
,
var_type
);
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
inputs
.
front
()));
}
};
...
...
paddle/fluid/operators/tensor_array_to_tensor_op.cc
浏览文件 @
27f7a726
...
...
@@ -177,10 +177,9 @@ class LoDTensorArray2TensorGradInferShape : public framework::InferShapeBase {
class
LoDTensorArray2TensorGradInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
out_var
:
op_desc
.
Output
(
framework
::
GradVarName
(
"X"
)))
{
block
->
Var
(
out_var
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
out_var
:
ctx
->
Output
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetType
(
out_var
,
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
}
}
};
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
浏览文件 @
27f7a726
...
...
@@ -46,8 +46,7 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
class
TensorRTEngineInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
}
// namespace operators
...
...
paddle/fluid/operators/uniform_random_op.cc
浏览文件 @
27f7a726
...
...
@@ -112,17 +112,16 @@ uniform distribution. The random result is in set [min, max].
class
UniformRandomOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
auto
var_data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"dtype"
)));
boost
::
get
<
int
>
(
ctx
->
GetAttr
(
"dtype"
)));
auto
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
if
(
out_var
.
GetType
()
!=
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
out_var
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
if
(
ctx
->
GetType
(
out_var_name
)
!=
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
out_var
.
SetDataType
(
var_data_type
);
ctx
->
SetDataType
(
out_var_name
,
var_data_type
);
}
};
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
paddle/fluid/platform/device_context.h
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
paddle/fluid/pybind/imperative.cc
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
paddle/fluid/pybind/inference_api.cc
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
paddle/fluid/pybind/pybind.cc
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/__init__.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/contrib/quantize/quantize_transpiler.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/contrib/utils/lookup_table_utils.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/data_feeder.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/executor.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/framework.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/imperative/__init__.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/imperative/profiler.py
0 → 100644
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/layers/detection.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/layers/nn.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/test_detection.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/mkldnn/test_transpose_int8_mkldnn_op.py
0 → 100644
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
0 → 100644
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_slice_op.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
0 → 100644
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/reader/__init__.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/reader/creator.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
python/paddle/reader/decorator.py
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
tools/manylinux1/build_scripts/build.sh
浏览文件 @
27f7a726
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录