Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
26822bd7
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
26822bd7
编写于
3月 20, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"add sequence kernel"
上级
4ee1c9e6
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
123 addition
and
70 deletion
+123
-70
paddle/fluid/operators/sequence_expand_op.cu
paddle/fluid/operators/sequence_expand_op.cu
+74
-33
paddle/fluid/operators/sequence_expand_op.h
paddle/fluid/operators/sequence_expand_op.h
+49
-37
未找到文件。
paddle/fluid/operators/sequence_expand_op.cu
浏览文件 @
26822bd7
...
@@ -21,48 +21,89 @@ namespace operators {
...
@@ -21,48 +21,89 @@ namespace operators {
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
template
<
typename
T
>
__global__
sequence_expand_kernel
(
const
T
*
x_data
,
T
*
out_data
,
size_t
*
lod
,
__global__
void
sequence_expand_kernel
(
const
T
*
x_data
,
T
*
out_data
,
size_t
element_len
)
{
const
size_t
*
lod
,
size_t
lod_size
,
int
BLOCK_SIZE
=
1024
;
size_t
element_len
)
{
__shared__
T
shm_lod
[
BLOCK_SIZE
];
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(
int
idx
=
threadIdx
.
x
;
idx
<
BLOCK_SIZE
;
++
idx
)
{
for
(;
tid_x
<
static_cast
<
int
>
(
lod_size
-
1
);
shm_lod
[
idx
]
=
lod
[
idx
];
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
scale
=
lod
[
tid_x
+
1
]
-
lod
[
tid_x
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
scale
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
int
tid_z
=
blockIdx
.
z
*
blockDim
.
z
+
threadIdx
.
z
;
int
item_start
=
tid_x
/
element_len
;
for
(;
tid_z
<
element_len
;
tid_z
+=
blockDim
.
z
*
gridDim
.
z
)
{
out_data
[
item_start
*
scale
+
tid_z
]
=
x_data
[
item_start
+
tid_z
];
}
}
}
}
for
(
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
idx
<
lod
.
size
();
}
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
scale
=
lod
[
i
]
template
<
typename
T
>
__global__
void
sequence_expand_grad_kernel
(
const
T
*
dout_data
,
T
*
dx_data
,
const
size_t
*
lod
,
size_t
lod_size
,
size_t
element_len
,
size_t
dout_size
)
{
extern
__shared__
T
shm
[];
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
static_cast
<
int
>
(
lod_size
-
1
);
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
scale
=
lod
[
tid_x
+
1
]
-
lod
[
tid_x
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
scale
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
int
tid_z
=
blockIdx
.
z
*
blockDim
.
z
+
threadIdx
.
z
;
int
item_start
=
tid_x
/
element_len
;
for
(;
tid_z
<
element_len
;
tid_z
+=
blockDim
.
z
*
gridDim
.
z
)
{
shm
[
item_start
+
tid_z
]
+=
doutx_data
[
item_start
*
scale
+
tid_z
];
}
}
}
// synchronize before write to dx
__syncthreads
();
for
(
int
idx
=
blockDimx
*
blockIdx
.
x
+
threadIdx
.
x
;
idx
<
static_cast
<
int
>
(
dout_size
);
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
dx_data
[
idx
]
=
shm
[
idx
;]
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
void
SequenceExpandFunctor
<
platform
::
CPUDeviceContext
,
T
>::
operator
()(
struct
SequenceExpandFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
const
platform
::
CPUDeviceContext
&
context
,
const
LoDTensor
&
x
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
LoDTensor
*
out
)
{
const
LoDTensor
&
x
,
LoDTensor
*
out
)
{
x_dims
=
x
.
dims
();
auto
x_dims
=
x
.
dims
();
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
out_starts
=
out
->
lod
().
back
();
auto
out_starts
=
out
->
lod
().
back
();
const
int
kThreadsPerBlock
=
1024
;
dim3
block_size
(
16
,
32
,
element_len
);
int
block_cols
=
kThreadsPerBlock
;
dim3
grid_size
(
10
,
10
);
if
(
out_cols
<
kThreadsPerBlock
)
{
// block_cols is aligned by 32.
sequence_expand_kernel
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
block_cols
=
((
out_cols
+
31
)
>>
5
)
<<
5
;
x
.
data
<
T
>
(),
out
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
out_starts
.
CUDAData
(
context
.
GetPlace
()),
out_starts
.
size
(),
element_len
);
}
}
int
block_rows
=
kThreadsPerBlock
/
block_cols
;
};
dim3
block_size
=
dim3
(
block_cols
,
block_rows
,
1
);
int
max_threads
=
context
.
GetMaxPhysicalThreadCount
();
template
<
typename
T
>
int
max_blocks
=
std
::
max
(
max_threads
/
kThreadsPerBlock
,
1
);
struct
SequenceExpandGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
LoDTensor
&
x
,
const
LoDTensor
&
out
,
const
LoDTensor
&
dout
,
LoDTensor
*
dx
)
{
auto
x_dims
=
x
.
dims
();
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
const
T
*
x_data
=
x
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
out_starts
=
out
->
lod
().
back
();
int
grid_cols
=
dim3
block_size
(
16
,
32
,
element_len
);
std
::
min
((
out_cols
+
block_cols
-
1
)
/
block_cols
,
max_blocks
);
dim3
grid_size
(
10
,
10
);
int
grid_rows
=
size_t
out_size
=
framework
::
product
(
dx
->
dims
());
std
::
min
(
max_blocks
/
grid_cols
,
std
::
max
(
out_rows
/
block_rows
,
1
));
sequence_expand_kernel
<<<
grid_size
,
block_size
,
out_size
*
sizeof
(
T
),
dim3
grid_size
=
dim3
(
grid_cols
,
grid_rows
,
1
);
context
.
stream
()
>>>
(
sequence_expand_kernel
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
dout
.
data
<
T
>
(),
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
x
.
data
<
T
>
(),
out
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
out_starts
.
CUDAData
(
context
.
GetPlace
()),
out_starts
.
size
(),
element_len
,
out_starts
.
CUDAData
(
context
.
GetPlace
()),
element_len
);
out_size
);
}
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
...
...
paddle/fluid/operators/sequence_expand_op.h
浏览文件 @
26822bd7
...
@@ -28,31 +28,36 @@ struct SequenceExpandFunctor {
...
@@ -28,31 +28,36 @@ struct SequenceExpandFunctor {
void
operator
()(
const
DeviceContext
&
ctx
,
const
LoDTensor
&
x
,
LoDTensor
*
out
);
void
operator
()(
const
DeviceContext
&
ctx
,
const
LoDTensor
&
x
,
LoDTensor
*
out
);
};
};
// template <typename DeviceContext, typename T>
template
<
typename
DeviceContext
,
typename
T
>
// struct SequenceExpandGradFunctor {};
struct
SequenceExpandGradFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
LoDTensor
&
x
,
const
LoDTensor
&
out
,
const
LoDTensor
&
dout
,
LoDTensor
*
dx
);
};
template
<
typename
T
>
template
<
typename
T
>
void
SequenceExpandFunctor
<
platform
::
CPUDeviceContext
,
T
>::
operator
()(
struct
SequenceExpandFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
const
platform
::
CPUDeviceContext
&
context
,
const
LoDTensor
&
x
,
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
LoDTensor
&
x
,
LoDTensor
*
out
)
{
LoDTensor
*
out
)
{
x_dims
=
x
.
dims
();
auto
x_dims
=
x
.
dims
();
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
x_data
=
x
->
data
<
T
>
();
auto
out_starts
=
out
->
lod
().
back
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
out_starts
=
out
->
lod
().
back
();
for
(
size_t
i
=
0
;
i
<
out_starts
.
size
()
-
1
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
out_starts
.
size
()
-
1
;
i
++
)
{
int
scale
=
out_starts
[
i
+
1
]
-
out_starts
[
i
];
int
scale
=
out_starts
[
i
+
1
]
-
out_starts
[
i
];
Eigen
::
TensorMap
<
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
const
T
,
2
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
Eigen
::
Tensor
<
const
T
,
2
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
x_t
(
x_data
,
1
,
element_len
);
x_t
(
x_data
,
1
,
element_len
);
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
2
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
2
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
out_t
(
out_data
,
scale
,
element_len
);
out_t
(
out_data
,
scale
,
element_len
);
Eigen
::
array
<
int
,
2
>
cast
({{
scale
,
1
}});
Eigen
::
array
<
int
,
2
>
cast
({{
scale
,
1
}});
out_t
.
device
(
*
context
.
eigen_device
())
=
x_t
.
broadcast
(
cast
);
out_t
.
device
(
*
context
.
eigen_device
())
=
x_t
.
broadcast
(
cast
);
x_data
+=
element_len
;
x_data
+=
element_len
;
out_data
+=
element_len
*
scale
;
out_data
+=
element_len
*
scale
;
}
}
}
}
}
;
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceExpandKernel
:
public
framework
::
OpKernel
<
T
>
{
class
SequenceExpandKernel
:
public
framework
::
OpKernel
<
T
>
{
...
@@ -60,7 +65,6 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
...
@@ -60,7 +65,6 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
const
T
*
x_data
=
x
->
data
<
T
>
();
auto
x_dims
=
x
->
dims
();
auto
x_dims
=
x
->
dims
();
auto
*
y
=
context
.
Input
<
LoDTensor
>
(
"Y"
);
auto
*
y
=
context
.
Input
<
LoDTensor
>
(
"Y"
);
PADDLE_ENFORCE
(
!
y
->
lod
().
empty
(),
"y should have lod"
);
PADDLE_ENFORCE
(
!
y
->
lod
().
empty
(),
"y should have lod"
);
...
@@ -86,19 +90,14 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
...
@@ -86,19 +90,14 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
* Grad(X).lod = Input(X).lod
* Grad(X).lod = Input(X).lod
*
*
* */
* */
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
SequenceExpandGradKernel
:
public
framework
::
OpKernel
<
T
>
{
struct
SequenceExpandGradFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
LoDTensor
&
x
,
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
LoDTensor
&
out
,
const
LoDTensor
&
dout
,
LoDTensor
*
dx
)
{
auto
*
d_out
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
out_last_level
=
out
.
lod
().
back
();
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
const
T
*
d_out_data
=
d_out
.
data
<
T
>
();
auto
*
out
=
context
.
Input
<
LoDTensor
>
(
"Out"
);
auto
*
d_x
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
out_last_level
=
out
->
lod
().
back
();
d_x
->
set_lod
(
x
->
lod
());
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
T
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
size_t
element_len
=
d_out
->
numel
()
/
d_out
->
dims
()[
0
];
size_t
element_len
=
d_out
.
numel
()
/
d_out
.
dims
()[
0
];
for
(
size_t
i
=
0
;
i
<
out_last_level
.
size
()
-
1
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
out_last_level
.
size
()
-
1
;
++
i
)
{
size_t
repeat
=
out_last_level
[
i
+
1
]
-
out_last_level
[
i
];
size_t
repeat
=
out_last_level
[
i
+
1
]
-
out_last_level
[
i
];
Eigen
::
TensorMap
<
Eigen
::
TensorMap
<
...
@@ -106,14 +105,27 @@ class SequenceExpandGradKernel : public framework::OpKernel<T> {
...
@@ -106,14 +105,27 @@ class SequenceExpandGradKernel : public framework::OpKernel<T> {
d_out_t
(
d_out_data
,
static_cast
<
int
>
(
repeat
),
element_len
);
d_out_t
(
d_out_data
,
static_cast
<
int
>
(
repeat
),
element_len
);
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
d_x_t
(
d_x_data
,
static_cast
<
int
>
(
element_len
));
d_x_t
(
d_x_data
,
static_cast
<
int
>
(
element_len
));
auto
place
=
d_x_t
.
device
(
*
context
.
eigen_device
())
=
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
d_out_t
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
d_x_t
.
device
(
*
place
)
=
d_out_t
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
d_out_data
+=
(
repeat
*
element_len
);
d_out_data
+=
(
repeat
*
element_len
);
d_x_data
+=
element_len
;
d_x_data
+=
element_len
;
}
}
}
}
};
};
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceExpandGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
d_out
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Input
<
LoDTensor
>
(
"Out"
);
auto
*
d_x
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
d_x
->
set_lod
(
x
->
lod
());
SequenceExpandGradFunctor
(
context
.
template
device_context
(),
*
x
,
*
out
,
d_out
,
d_x
);
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录