Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
265302ed
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
265302ed
编写于
8月 15, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into feature/fast_executor
上级
05cadf1b
bd87f67f
变更
33
隐藏空白更改
内联
并排
Showing
33 changed file
with
898 addition
and
164 deletion
+898
-164
CMakeLists.txt
CMakeLists.txt
+1
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+8
-4
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+32
-0
paddle/fluid/framework/ir/graph_test.cc
paddle/fluid/framework/ir/graph_test.cc
+95
-1
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+14
-1
paddle/fluid/framework/op_desc.h
paddle/fluid/framework/op_desc.h
+3
-1
paddle/fluid/framework/program_desc.cc
paddle/fluid/framework/program_desc.cc
+1
-1
paddle/fluid/framework/tensor.cc
paddle/fluid/framework/tensor.cc
+1
-0
paddle/fluid/framework/tensor_impl.h
paddle/fluid/framework/tensor_impl.h
+8
-0
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+16
-0
paddle/fluid/operators/.flatten_op.cc.swp
paddle/fluid/operators/.flatten_op.cc.swp
+0
-0
paddle/fluid/operators/cross_entropy_op.cc
paddle/fluid/operators/cross_entropy_op.cc
+52
-37
paddle/fluid/operators/cross_entropy_op.h
paddle/fluid/operators/cross_entropy_op.h
+11
-3
paddle/fluid/operators/shape_op.cc
paddle/fluid/operators/shape_op.cc
+2
-2
paddle/fluid/operators/shape_op.cu
paddle/fluid/operators/shape_op.cu
+1
-1
paddle/fluid/operators/shape_op.h
paddle/fluid/operators/shape_op.h
+1
-1
paddle/fluid/operators/softmax_op.h
paddle/fluid/operators/softmax_op.h
+10
-18
paddle/fluid/platform/profiler.cc
paddle/fluid/platform/profiler.cc
+12
-5
paddle/fluid/pybind/protobuf.cc
paddle/fluid/pybind/protobuf.cc
+2
-1
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+2
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+98
-35
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+2
-1
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+6
-2
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+31
-19
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+68
-0
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
+102
-0
python/paddle/fluid/tests/unittests/test_desc_clone.py
python/paddle/fluid/tests/unittests/test_desc_clone.py
+196
-0
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+56
-13
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+1
-1
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+11
-0
python/paddle/fluid/tests/unittests/test_program.py
python/paddle/fluid/tests/unittests/test_program.py
+34
-0
python/paddle/fluid/tests/unittests/test_protobuf_descs.py
python/paddle/fluid/tests/unittests/test_protobuf_descs.py
+1
-1
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+20
-12
未找到文件。
CMakeLists.txt
浏览文件 @
265302ed
...
...
@@ -204,12 +204,11 @@ include(external/snappy) # download snappy
include
(
external/snappystream
)
include
(
external/threadpool
)
set
(
WITH_ANAKIN OFF CACHE STRING
"Disable Anakin first, will add it later."
FORCE
)
if
(
WITH_GPU
)
include
(
cuda
)
include
(
tensorrt
)
include
(
external/anakin
)
else
()
set
(
WITH_ANAKIN OFF CACHE STRING
"Anakin is valid only when GPU is set."
FORCE
)
endif
()
include
(
cudnn
)
# set cudnn libraries, must before configure
...
...
paddle/fluid/API.spec
浏览文件 @
265302ed
...
...
@@ -6,7 +6,7 @@ paddle.fluid.Program.create_block ArgSpec(args=['self', 'parent_idx'], varargs=N
paddle.fluid.Program.current_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.get_desc ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.global_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.inference_optimize ArgSpec(args=['self'
], varargs=None, keywords=None, defaults=None
)
paddle.fluid.Program.inference_optimize ArgSpec(args=['self'
, 'export_for_deployment'], varargs=None, keywords=None, defaults=(True,)
)
paddle.fluid.Program.list_vars ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.optimized_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None, keywords=None, defaults=None)
...
...
@@ -18,6 +18,9 @@ paddle.fluid.Operator.all_attrs ArgSpec(args=['self'], varargs=None, keywords=No
paddle.fluid.Operator.attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.attr_type ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.block_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.block_attr_id ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.blocks_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.blocks_attr_ids ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.has_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.has_kernel ArgSpec(args=['self', 'op_type'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.input ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
...
...
@@ -52,7 +55,7 @@ paddle.fluid.Inferencer.__init__ ArgSpec(args=['self', 'infer_func', 'param_path
paddle.fluid.Inferencer.infer ArgSpec(args=['self', 'inputs', 'return_numpy'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'
], varargs=None, keywords=None, defaults=None
)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'
, 'startup_program'], varargs=None, keywords=None, defaults=(None,)
)
paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True))
paddle.fluid.InferenceTranspiler.__init__
...
...
@@ -74,7 +77,7 @@ paddle.fluid.io.save_persistables ArgSpec(args=['executor', 'dirname', 'main_pro
paddle.fluid.io.load_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.io.load_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.load_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename'
], varargs=None, keywords=None, defaults=(None, None, Non
e))
paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename'
, 'export_for_deployment'], varargs=None, keywords=None, defaults=(None, None, None, Tru
e))
paddle.fluid.io.load_inference_model ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.get_inference_program ArgSpec(args=['target_vars', 'main_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False))
...
...
@@ -156,6 +159,7 @@ paddle.fluid.layers.relu ArgSpec(args=['x'], varargs=None, keywords=None, defaul
paddle.fluid.layers.log ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.flatten ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
...
...
@@ -324,7 +328,7 @@ paddle.fluid.contrib.BeamSearchDecoder.update_array ArgSpec(args=['self', 'array
paddle.fluid.contrib.memory_usage ArgSpec(args=['program', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'
], varargs=None, keywords=None, defaults=None
)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'
, 'startup_program'], varargs=None, keywords=None, defaults=(None,)
)
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True))
paddle.fluid.transpiler.InferenceTranspiler.__init__
...
...
paddle/fluid/framework/ir/graph.h
浏览文件 @
265302ed
...
...
@@ -28,6 +28,38 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
/*
* The graph is a Directed Acyclic Single Static Assignment Graph.
*
* In more detail, the following properties must hold:
*
* The graph shouldn't contain cycle. Each node is a black-box to the graph
* so the node itself could be a loop operator.
*
* Each Variable-type node has only one input (thus single static assignment).
*
* The output/input of operator is variable and the output/input of variable
* is operator.
*
* The following data harzards in Program are addressed in the Graph:
*
* Write-After-Read
* a = op1(x)
* x = op2(b)
* A control-dependency connection is created bettwen op1 and op2 such that
* op1->op2, so as to ensure correct order.
*
* Write-After-Write
* x = op1(a)
* x = op2(b)
* A control-dependency connection is created between op1 and op2 such that
* op1->op2, so as to ensure correct order.
*
* Other properties currently hold, but is not enforced yet:
*
* Variable-type node (not control dep) with the same variable name share
* the same underlying VarDesc.
*/
class
Graph
{
public:
explicit
Graph
(
const
ProgramDesc
&
program
);
...
...
paddle/fluid/framework/ir/graph_test.cc
浏览文件 @
265302ed
...
...
@@ -36,7 +36,7 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
public:
void
Make
()
{
AddInput
(
"X"
,
""
).
AsDuplicable
();
AddOutput
(
"Out"
,
""
);
AddOutput
(
"Out"
,
""
)
.
AsDuplicable
()
;
AddComment
(
""
);
}
};
...
...
@@ -59,11 +59,27 @@ class SumOpVarTypeInference : public VarTypeInference {
block
->
Var
(
out_var_name
)
->
SetType
(
default_var_type
);
}
};
class
DummyOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
""
).
AsDuplicable
();
AddOutput
(
"Out"
,
""
).
AsDuplicable
();
AddComment
(
""
);
}
};
class
DummyOpVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{}
};
}
// namespace framework
}
// namespace paddle
REGISTER_OPERATOR
(
sum
,
paddle
::
framework
::
NOP
,
paddle
::
framework
::
SumOpMaker
,
paddle
::
framework
::
SumOpVarTypeInference
);
REGISTER_OPERATOR
(
dummy
,
paddle
::
framework
::
NOP
,
paddle
::
framework
::
SumOpMaker
,
paddle
::
framework
::
SumOpVarTypeInference
);
REGISTER_OPERATOR
(
sum_without_infer_var_type
,
paddle
::
framework
::
NOP
,
paddle
::
framework
::
SumOpMaker
);
...
...
@@ -110,5 +126,83 @@ TEST(GraphTest, Basic) {
}
ASSERT_EQ
(
nodes
.
size
(),
5
);
}
TEST
(
GraphTest
,
WriteAfterRead
)
{
// void Test() {
ProgramDesc
prog
;
auto
*
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"sum"
);
op
->
SetInput
(
"X"
,
{
"a"
});
op
->
SetOutput
(
"Out"
,
{
"b"
});
op
->
SetAttr
(
"op_role"
,
1
);
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"dummy"
);
op
->
SetInput
(
"X"
,
{
"c"
});
op
->
SetOutput
(
"Out"
,
{
"a"
});
op
->
SetAttr
(
"op_role"
,
1
);
prog
.
MutableBlock
(
0
)
->
Var
(
"a"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"b"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"c"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
std
::
unique_ptr
<
ir
::
Graph
>
g
(
new
ir
::
Graph
(
prog
));
ir
::
Node
*
control_dep1
=
nullptr
;
ir
::
Node
*
control_dep2
=
nullptr
;
for
(
ir
::
Node
*
n
:
g
->
Nodes
())
{
if
(
n
->
Name
()
==
"sum"
)
{
ASSERT_EQ
(
n
->
outputs
[
0
]
->
Name
(),
"b"
);
ASSERT_TRUE
(
ir
::
IsControlDepVar
(
*
n
->
outputs
[
1
]));
control_dep1
=
n
->
outputs
[
1
];
ASSERT_EQ
(
n
->
outputs
.
size
(),
2
);
}
if
(
n
->
Name
()
==
"dummy"
)
{
ASSERT_EQ
(
n
->
inputs
[
0
]
->
Name
(),
"c"
);
ASSERT_TRUE
(
ir
::
IsControlDepVar
(
*
n
->
inputs
[
1
]));
control_dep2
=
n
->
inputs
[
1
];
ASSERT_EQ
(
n
->
inputs
.
size
(),
2
);
}
}
ASSERT_EQ
(
control_dep1
,
control_dep2
);
}
TEST
(
GraphTest
,
WriteAfterWrite
)
{
// void Test() {
ProgramDesc
prog
;
auto
*
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"sum"
);
op
->
SetInput
(
"X"
,
{
"a"
});
op
->
SetOutput
(
"Out"
,
{
"b"
});
op
->
SetAttr
(
"op_role"
,
1
);
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"dummy"
);
op
->
SetInput
(
"X"
,
{
"c"
});
op
->
SetOutput
(
"Out"
,
{
"b"
});
op
->
SetAttr
(
"op_role"
,
1
);
prog
.
MutableBlock
(
0
)
->
Var
(
"a"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"b"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"c"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
std
::
unique_ptr
<
ir
::
Graph
>
g
(
new
ir
::
Graph
(
prog
));
ir
::
Node
*
control_dep1
=
nullptr
;
ir
::
Node
*
control_dep2
=
nullptr
;
for
(
ir
::
Node
*
n
:
g
->
Nodes
())
{
if
(
n
->
Name
()
==
"sum"
)
{
ASSERT_EQ
(
n
->
outputs
[
0
]
->
Name
(),
"b"
);
ASSERT_TRUE
(
ir
::
IsControlDepVar
(
*
n
->
outputs
[
1
]));
ASSERT_EQ
(
n
->
outputs
.
size
(),
2
);
control_dep1
=
n
->
outputs
[
1
];
}
if
(
n
->
Name
()
==
"dummy"
)
{
ASSERT_EQ
(
n
->
inputs
[
0
]
->
Name
(),
"c"
);
ASSERT_TRUE
(
ir
::
IsControlDepVar
(
*
n
->
inputs
[
1
]));
control_dep2
=
n
->
inputs
[
1
];
ASSERT_EQ
(
n
->
inputs
.
size
(),
2
);
ASSERT_EQ
(
control_dep1
,
control_dep2
);
}
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/op_desc.cc
浏览文件 @
265302ed
...
...
@@ -238,7 +238,20 @@ Attribute OpDesc::GetNullableAttr(const std::string &name) const {
}
}
int
OpDesc
::
GetBlockAttr
(
const
std
::
string
&
name
)
const
{
std
::
vector
<
int
>
OpDesc
::
GetBlocksAttrIds
(
const
std
::
string
&
name
)
const
{
auto
it
=
attrs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
attrs_
.
end
(),
"Attribute %s is not found"
,
name
);
auto
blocks
=
boost
::
get
<
std
::
vector
<
BlockDesc
*>>
(
it
->
second
);
std
::
vector
<
int
>
ids
;
for
(
auto
n
:
blocks
)
{
ids
.
push_back
(
n
->
ID
());
}
return
ids
;
}
int
OpDesc
::
GetBlockAttrId
(
const
std
::
string
&
name
)
const
{
auto
it
=
attrs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
attrs_
.
end
(),
"Attribute %s is not found"
,
name
);
return
boost
::
get
<
BlockDesc
*>
(
it
->
second
)
->
ID
();
...
...
paddle/fluid/framework/op_desc.h
浏览文件 @
265302ed
...
...
@@ -83,7 +83,9 @@ class OpDesc {
Attribute
GetNullableAttr
(
const
std
::
string
&
name
)
const
;
int
GetBlockAttr
(
const
std
::
string
&
name
)
const
;
int
GetBlockAttrId
(
const
std
::
string
&
name
)
const
;
std
::
vector
<
int
>
GetBlocksAttrIds
(
const
std
::
string
&
name
)
const
;
void
Rename
(
const
std
::
string
&
old_name
,
const
std
::
string
&
new_name
);
...
...
paddle/fluid/framework/program_desc.cc
浏览文件 @
265302ed
...
...
@@ -58,7 +58,7 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
for
(
const
std
::
string
&
attr_name
:
op
->
AttrNames
())
{
if
(
op
->
GetAttrType
(
attr_name
)
==
proto
::
AttrType
::
BLOCK
)
{
int
sub_block_id
=
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlockAttr
(
attr_name
);
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlockAttr
Id
(
attr_name
);
op
->
SetBlockAttr
(
attr_name
,
MutableBlock
(
sub_block_id
));
}
}
...
...
paddle/fluid/framework/tensor.cc
浏览文件 @
265302ed
...
...
@@ -112,5 +112,6 @@ Tensor& Tensor::Resize(const DDim& dims) {
const
DDim
&
Tensor
::
dims
()
const
{
return
dims_
;
}
int64_t
Tensor
::
numel
()
const
{
return
product
(
dims_
);
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/tensor_impl.h
浏览文件 @
265302ed
...
...
@@ -59,6 +59,14 @@ inline T* Tensor::mutable_data(platform::Place place) {
}
inline
Tensor
ReshapeToMatrix
(
const
Tensor
&
src
,
int
num_col_dims
)
{
int
rank
=
src
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
rank
,
2
,
"'ReshapeToMatrix()' is only used for flatten high rank "
"tensors to matrixs. Can not be used in reshaping vectors."
);
if
(
rank
==
2
)
{
return
src
;
}
Tensor
res
;
res
.
ShareDataWith
(
src
);
res
.
Resize
(
flatten_to_2d
(
src
.
dims
(),
num_col_dims
));
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
265302ed
...
...
@@ -22,6 +22,9 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_bool
(
profile
,
false
,
"Turn on profiler for fluid"
);
namespace
paddle
{
namespace
{
...
...
@@ -58,6 +61,15 @@ bool NativePaddlePredictor::Init(
std
::
shared_ptr
<
framework
::
Scope
>
parent_scope
)
{
VLOG
(
3
)
<<
"Predictor::init()"
;
if
(
FLAGS_profile
)
{
LOG
(
WARNING
)
<<
"Profiler is actived, might affect the performance"
;
LOG
(
INFO
)
<<
"You can turn off by set gflags '-profile false'"
;
auto
tracking_device
=
config_
.
use_gpu
?
platform
::
ProfilerState
::
kAll
:
platform
::
ProfilerState
::
kCPU
;
platform
::
EnableProfiler
(
tracking_device
);
}
if
(
config_
.
use_gpu
)
{
place_
=
paddle
::
platform
::
CUDAPlace
(
config_
.
device
);
}
else
{
...
...
@@ -102,6 +114,10 @@ bool NativePaddlePredictor::Init(
}
NativePaddlePredictor
::~
NativePaddlePredictor
()
{
if
(
FLAGS_profile
)
{
platform
::
DisableProfiler
(
platform
::
EventSortingKey
::
kTotal
,
"./profile.log"
);
}
if
(
sub_scope_
)
{
scope_
->
DeleteScope
(
sub_scope_
);
}
...
...
paddle/fluid/operators/.flatten_op.cc.swp
已删除
100644 → 0
浏览文件 @
05cadf1b
文件已删除
paddle/fluid/operators/cross_entropy_op.cc
浏览文件 @
265302ed
...
...
@@ -28,23 +28,26 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2UL
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2UL
,
"Input(Label)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
"The 1st dimension of Input(X) and Input(Label) should "
"be equal."
);
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
rank
,
label_dims
.
size
(),
"Input(X) and Input(Label) shall have the same rank."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
label_dims
,
0
,
rank
-
1
),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
label_dims
[
1
],
"If Attr(soft_label) == true, the
2nd
dimension of "
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
"If Attr(soft_label) == true, the
last
dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
1UL
,
"If Attr(softLabel) == false, the
2nd
dimension of "
PADDLE_ENFORCE_EQ
(
label_dims
[
rank
-
1
],
1UL
,
"If Attr(softLabel) == false, the
last
dimension of "
"Input(Label) should be 1."
);
}
ctx
->
SetOutputDim
(
"Y"
,
{
x_dims
[
0
],
1
});
auto
y_dims
=
x_dims
;
y_dims
[
rank
-
1
]
=
1
;
ctx
->
SetOutputDim
(
"Y"
,
y_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Y"
);
}
...
...
@@ -74,24 +77,28 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
dy_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
2
,
"Input(Y@Grad)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2
,
"Input(Label)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
"The 1st dimension of Input(X) and Input(Label) should "
"be equal."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
dy_dims
[
0
],
"The 1st dimension of Input(X) and Input(Y@Grad) should "
"be equal."
);
PADDLE_ENFORCE_EQ
(
dy_dims
[
1
],
1
,
"The 2nd dimension of Input(Y@Grad) should be 1."
);
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
rank
,
"Input(Y@Grad) and Input(X) should have the same rank."
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
rank
,
"Input(Label) and Input(X) should have the same rank."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
label_dims
,
0
,
rank
-
1
),
"The Input(X) and Input(Label) should have the same "
"shape except the last dimension."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
dy_dims
,
0
,
rank
-
1
),
"The Input(X) and Input(Y@Grad) should have the same "
"shape except the last dimension."
);
PADDLE_ENFORCE_EQ
(
dy_dims
[
rank
-
1
],
1
,
"The last dimension of Input(Y@Grad) should be 1."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
label_dims
[
1
],
"When Attr(soft_label) == true, the
2nd
dimension of "
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
"When Attr(soft_label) == true, the
last
dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
1
,
"When Attr(soft_label) == false, the
2nd
dimension of "
PADDLE_ENFORCE_EQ
(
label_dims
[
rank
-
1
],
1
,
"When Attr(soft_label) == false, the
last
dimension of "
"Input(Label) should be 1."
);
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
...
...
@@ -113,18 +120,20 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor, default Tensor<float>), a 2-D tensor with shape [N x D],"
" where N is the batch size and D is the number of classes. "
"This input is a probability computed by the previous operator, "
"which is almost always the result of a softmax operator."
);
AddInput
(
"Label"
,
"(Tensor), the ground truth which is a 2-D tensor. When "
"soft_label is set to false, Label is a Tensor<int64> with shape "
"[N x 1]. When soft_label is set to true, Label is a "
"Tensor<float/double> with shape [N x D]."
);
"(Tensor, default Tensor<float>), a tensor whose last dimension "
"size is equal to the number of classes. This input is a "
"probability computed by the previous operator, which is almost "
"always the result of a softmax operator."
);
AddInput
(
"Label"
,
"(Tensor), the tensor which represents the ground truth. It has the "
"same shape with 'X' except the last dimension. When soft_label is set "
"to false, the last dimension size is 1; when soft_label is set to "
"true, the last dimension size is equal to the number of classes."
);
AddOutput
(
"Y"
,
"(Tensor, default Tensor<float>), a 2-D tensor with shape "
"[N x 1]. The cross entropy loss."
);
"(Tensor, default Tensor<float>), a tensor whose shape is same "
"with 'X' except that the last dimension size is 1. It "
"represents the cross entropy loss."
);
AddAttr
<
bool
>
(
"soft_label"
,
"(bool, default false), a flag indicating whether to "
"interpretate the given labels as soft labels."
)
...
...
@@ -132,6 +141,12 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
CrossEntropy Operator.
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
The matrix's second dimension(row length) is as same as the original last
dimension, and the first dimension(column length) is the product of all other
original dimensions. Then the softmax computation will take palce on each raw
of flattened matrixs.
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
...
...
paddle/fluid/operators/cross_entropy_op.h
浏览文件 @
265302ed
...
...
@@ -33,8 +33,13 @@ class CrossEntropyOpKernel : public framework::OpKernel<T> {
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
rank
=
x
->
dims
().
size
();
Tensor
x_2d
=
framework
::
ReshapeToMatrix
(
*
x
,
rank
-
1
);
Tensor
labels_2d
=
framework
::
ReshapeToMatrix
(
*
labels
,
rank
-
1
);
Tensor
y_2d
=
framework
::
ReshapeToMatrix
(
*
y
,
rank
-
1
);
math
::
CrossEntropyFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
y
,
x
,
labels
,
ctx
.
template
device_context
<
DeviceContext
>(),
&
y_2d
,
&
x_2d
,
&
labels_2d
,
ctx
.
Attr
<
bool
>
(
"soft_label"
));
}
};
...
...
@@ -98,9 +103,12 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
class_num
=
x
->
dims
()[
1
];
// Following computation only depends on the last dimension size. So it's
// unnecessary to convert tensors to 2-D views.
int
rank
=
x
->
dims
().
size
();
int64_t
class_num
=
x
->
dims
()[
rank
-
1
];
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
XeSoftlabelGradFunctor
<
T
>
functor
(
dx_data
,
dy
->
data
<
T
>
(),
x
->
data
<
T
>
(),
label
->
data
<
T
>
(),
...
...
paddle/fluid/operators/shape_op.cc
浏览文件 @
265302ed
...
...
@@ -38,7 +38,7 @@ class ShapeOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Input"
,
"(Tensor), The input tensor."
);
AddOutput
(
"Out"
,
"(Tensor), The shape of input tensor, the data type of the shape"
" is int
64
_t, will be on the same device with the input Tensor."
);
" is int
32
_t, will be on the same device with the input Tensor."
);
AddComment
(
R"DOC(
Shape Operator
...
...
@@ -53,5 +53,5 @@ Get the shape of input tensor. Only support CPU input Tensor now.
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
shape
,
ops
::
ShapeOp
,
ops
::
ShapeOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
shape
,
ops
::
ShapeKernel
<
int
>
,
ops
::
ShapeKernel
<
int
64
_t
>
,
REGISTER_OP_CPU_KERNEL
(
shape
,
ops
::
ShapeKernel
<
int
>
,
ops
::
ShapeKernel
<
int
32
_t
>
,
ops
::
ShapeKernel
<
float
>
,
ops
::
ShapeKernel
<
double
>
);
paddle/fluid/operators/shape_op.cu
浏览文件 @
265302ed
...
...
@@ -15,6 +15,6 @@ limitations under the License. */
#include "paddle/fluid/operators/shape_op.h"
REGISTER_OP_CUDA_KERNEL
(
shape
,
paddle
::
operators
::
ShapeKernel
<
int
>
,
paddle
::
operators
::
ShapeKernel
<
int
64
_t
>
,
paddle
::
operators
::
ShapeKernel
<
int
32
_t
>
,
paddle
::
operators
::
ShapeKernel
<
float
>
,
paddle
::
operators
::
ShapeKernel
<
double
>
);
paddle/fluid/operators/shape_op.h
浏览文件 @
265302ed
...
...
@@ -27,7 +27,7 @@ class ShapeKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_t
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
out_t
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
out_data
=
out_t
->
mutable_data
<
int
64
_t
>
(
platform
::
CPUPlace
());
auto
out_data
=
out_t
->
mutable_data
<
int
32
_t
>
(
platform
::
CPUPlace
());
auto
in_dims
=
in_t
->
dims
();
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
out_data
[
i
]
=
in_dims
[
i
];
...
...
paddle/fluid/operators/softmax_op.h
浏览文件 @
265302ed
...
...
@@ -31,16 +31,12 @@ class SoftmaxKernel : public framework::OpKernel<T> {
// allocate memory on device.
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
X
->
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
LoDTensor
flattened_x
;
framework
::
LoDTensor
flattened_out
;
flattened_x
.
ShareDataWith
(
*
X
).
Resize
(
flattened_dims
);
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
int
rank
=
X
->
dims
().
size
();
Tensor
X_2d
=
framework
::
ReshapeToMatrix
(
*
X
,
rank
-
1
);
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
math
::
SoftmaxFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
flattened_x
,
&
flattened_out
);
context
.
template
device_context
<
DeviceContext
>(),
&
X_2d
,
&
Out_2d
);
}
};
...
...
@@ -55,18 +51,14 @@ class SoftmaxGradKernel : public framework::OpKernel<T> {
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
Out
->
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
LoDTensor
flattened_out
;
framework
::
LoDTensor
flattened_d_out
;
framework
::
LoDTensor
flattened_d_x
;
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
flattened_d_out
.
ShareDataWith
(
*
dOut
).
Resize
(
flattened_dims
);
flattened_d_x
.
ShareDataWith
(
*
dX
).
Resize
(
flattened_dims
);
int
rank
=
Out
->
dims
().
size
();
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
Tensor
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
Tensor
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
flattened_out
,
&
flattened_d_out
,
&
flattened_d_x
);
context
.
template
device_context
<
DeviceContext
>(),
&
Out_2d
,
&
dOut_2d
,
&
dX_2d
);
}
};
...
...
paddle/fluid/platform/profiler.cc
浏览文件 @
265302ed
...
...
@@ -270,12 +270,13 @@ struct EventItem {
double
min_time
;
double
max_time
;
double
ave_time
;
float
ratio
;
};
// Print results
void
PrintProfiler
(
const
std
::
vector
<
std
::
vector
<
EventItem
>>&
events_table
,
const
std
::
string
&
sorted_domain
,
const
size_t
name_width
,
const
size_t
data_width
)
{
const
size_t
data_width
,
double
total
)
{
// Output header information
std
::
cout
<<
"
\n
------------------------->"
<<
" Profiling Report "
...
...
@@ -300,7 +301,8 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
std
::
cout
<<
std
::
setw
(
name_width
)
<<
"Event"
<<
std
::
setw
(
data_width
)
<<
"Calls"
<<
std
::
setw
(
data_width
)
<<
"Total"
<<
std
::
setw
(
data_width
)
<<
"Min."
<<
std
::
setw
(
data_width
)
<<
"Max."
<<
std
::
setw
(
data_width
)
<<
"Ave."
<<
std
::
endl
;
<<
"Max."
<<
std
::
setw
(
data_width
)
<<
"Ave."
<<
std
::
setw
(
data_width
)
<<
"Ratio."
<<
std
::
endl
;
for
(
size_t
i
=
0
;
i
<
events_table
.
size
();
++
i
)
{
for
(
size_t
j
=
0
;
j
<
events_table
[
i
].
size
();
++
j
)
{
const
EventItem
&
event_item
=
events_table
[
i
][
j
];
...
...
@@ -309,7 +311,9 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
<<
std
::
setw
(
data_width
)
<<
event_item
.
total_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
min_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
max_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
ave_time
<<
std
::
endl
;
<<
std
::
setw
(
data_width
)
<<
event_item
.
ave_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
total_time
/
total
<<
std
::
endl
;
}
}
std
::
cout
<<
std
::
endl
;
...
...
@@ -359,6 +363,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
std
::
vector
<
std
::
vector
<
EventItem
>>
events_table
;
size_t
max_name_width
=
0
;
double
total
=
0.
;
// the total time
for
(
size_t
i
=
0
;
i
<
events
.
size
();
i
++
)
{
std
::
list
<
Event
>
pushed_events
;
std
::
vector
<
EventItem
>
event_items
;
...
...
@@ -379,6 +384,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
g_state
==
ProfilerState
::
kAll
)
?
rit
->
CudaElapsedMs
(
events
[
i
][
j
])
:
rit
->
CpuElapsedMs
(
events
[
i
][
j
]);
total
+=
event_time
;
std
::
string
event_name
=
"thread"
+
std
::
to_string
(
rit
->
thread_id
())
+
"::"
+
rit
->
name
();
...
...
@@ -387,7 +393,8 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
if
(
event_idx
.
find
(
event_name
)
==
event_idx
.
end
())
{
event_idx
[
event_name
]
=
event_items
.
size
();
EventItem
event_item
=
{
event_name
,
1
,
event_time
,
event_time
,
event_time
,
event_time
};
event_time
,
event_time
,
event_time
,
0.
};
event_items
.
push_back
(
event_item
);
}
else
{
int
index
=
event_idx
[
event_name
];
...
...
@@ -431,7 +438,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
}
// Print report
PrintProfiler
(
events_table
,
sorted_domain
,
max_name_width
+
4
,
12
);
PrintProfiler
(
events_table
,
sorted_domain
,
max_name_width
+
4
,
12
,
total
);
}
void
DisableProfiler
(
EventSortingKey
sorted_key
,
...
...
paddle/fluid/pybind/protobuf.cc
浏览文件 @
265302ed
...
...
@@ -301,7 +301,8 @@ void BindOpDesc(pybind11::module *m) {
std
::
string
ser
(
seriralized
);
self
.
SetAttr
(
name
,
ser
);
})
.
def
(
"block_attr"
,
&
pd
::
OpDesc
::
GetBlockAttr
)
.
def
(
"block_attr_id"
,
&
pd
::
OpDesc
::
GetBlockAttrId
)
.
def
(
"blocks_attr_ids"
,
&
pd
::
OpDesc
::
GetBlocksAttrIds
)
.
def
(
"check_attrs"
,
&
pd
::
OpDesc
::
CheckAttrs
)
.
def
(
"infer_shape"
,
&
pd
::
OpDesc
::
InferShape
)
.
def
(
"infer_var_type"
,
&
pd
::
OpDesc
::
InferVarType
)
...
...
python/paddle/fluid/backward.py
浏览文件 @
265302ed
...
...
@@ -344,7 +344,7 @@ def _append_backward_ops_(block,
grad_sub_block_list
=
[]
# If the op has its own sub-block, deal with the sub-block first
if
op
.
has_attr
(
"sub_block"
):
sub_block
=
program
.
block
(
op
.
block_attr
(
"sub_block"
))
sub_block
=
program
.
block
(
op
.
block_attr
_id
(
"sub_block"
))
grad_sub_block
=
program
.
create_block
()
grad_sub_block
.
_set_forward_block_idx
(
sub_block
.
idx
)
cb
=
_callback_lookup_
(
op
)
...
...
@@ -406,7 +406,7 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
for
op_idx
in
range
(
start_op_idx
,
block
.
desc
.
op_size
()):
op_desc
=
block
.
desc
.
op
(
op_idx
)
if
op_desc
.
has_attr
(
"sub_block"
):
sub_block
=
block
.
program
.
block
(
op_desc
.
block_attr
(
"sub_block"
))
sub_block
=
block
.
program
.
block
(
op_desc
.
block_attr
_id
(
"sub_block"
))
_append_backward_vars_
(
sub_block
,
0
,
grad_to_var
,
grad_info_map
)
new_vars
=
set
()
# create new gradient variables
...
...
python/paddle/fluid/framework.py
浏览文件 @
265302ed
...
...
@@ -476,23 +476,25 @@ class Operator(object):
attrs
=
None
):
self
.
block
=
block
self
.
desc
=
desc
self
.
attrs
=
attrs
if
self
.
attrs
is
None
:
self
.
attrs
=
dict
()
# note: not add self.attrs here:
# https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
op_attrs
=
attrs
if
op_attrs
is
None
:
op_attrs
=
dict
()
del
attrs
op_maker
=
core
.
op_proto_and_checker_maker
if
op_maker
.
kOpRoleAttrName
()
not
in
self
.
attrs
:
self
.
attrs
[
op_maker
.
kOpRoleAttrName
()]
=
self
.
block
.
program
.
op_role
if
op_maker
.
kOpRoleAttrName
()
not
in
op_
attrs
:
op_
attrs
[
op_maker
.
kOpRoleAttrName
()]
=
self
.
block
.
program
.
op_role
role_var_name
=
op_maker
.
kOpRoleVarAttrName
()
if
len
(
self
.
block
.
program
.
op_role_var
)
!=
0
and
role_var_name
not
in
self
.
attrs
:
self
.
attrs
[
role_var_name
]
=
self
.
block
.
program
.
op_role_var
op_role_var
)
!=
0
and
role_var_name
not
in
op_
attrs
:
op_
attrs
[
role_var_name
]
=
self
.
block
.
program
.
op_role_var
if
role_var_name
in
self
.
attrs
and
len
(
self
.
attrs
[
role_var_name
])
==
0
:
del
self
.
attrs
[
role_var_name
]
if
role_var_name
in
op_attrs
and
len
(
op_
attrs
[
role_var_name
])
==
0
:
del
op_
attrs
[
role_var_name
]
if
len
(
self
.
desc
.
type
())
!=
0
:
return
...
...
@@ -576,15 +578,14 @@ class Operator(object):
arg
.
op
=
self
self
.
desc
.
set_output
(
out_proto
.
name
,
out_arg_names
)
if
self
.
attrs
is
not
None
:
if
not
isinstance
(
self
.
attrs
,
dict
):
if
op_
attrs
is
not
None
:
if
not
isinstance
(
op_
attrs
,
dict
):
raise
TypeError
(
"'attrs' should be a dict."
)
for
attr
in
proto
.
attrs
:
attr_name
=
attr
.
name
if
(
attr_name
not
in
self
.
attrs
)
or
(
self
.
attrs
[
attr_name
]
is
None
):
if
(
attr_name
not
in
op_attrs
)
or
(
op_attrs
[
attr_name
]
is
None
):
continue
attr_val
=
self
.
attrs
[
attr_name
]
attr_val
=
op_
attrs
[
attr_name
]
self
.
_update_desc_attr
(
attr_name
,
attr_val
)
self
.
desc
.
check_attrs
()
...
...
@@ -732,7 +733,6 @@ class Operator(object):
Raises:
ValueError: If the type of value doesn't match with desc.attr_type(name).
"""
self
.
attrs
[
name
]
=
val
self
.
_update_desc_attr
(
name
,
val
)
def
_update_desc_attr
(
self
,
name
,
val
):
...
...
@@ -774,9 +774,9 @@ class Operator(object):
"""
return
self
.
desc
.
attr
(
name
)
def
block_attr
(
self
,
name
):
def
block_attr
_id
(
self
,
name
):
"""
Get the block attribute by name.
Get the block attribute
's id
by name.
Args:
name(str): the attribute name.
...
...
@@ -784,22 +784,74 @@ class Operator(object):
Returns:
int: the block index.
"""
return
self
.
desc
.
block_attr
(
name
)
return
self
.
desc
.
block_attr_id
(
name
)
def
block_attr
(
self
,
name
):
"""
Get the block attribute by name.
Args:
name(str): the attribute name.
Returns:
block: the block attribute.
"""
id
=
self
.
block_attr_id
(
name
)
assert
(
id
>=
0
and
id
<
len
(
self
.
block
.
program
.
blocks
))
return
self
.
block
.
program
.
blocks
[
id
]
def
blocks_attr
(
self
,
name
):
"""
Get the blocks attribute by name.
Args:
name(str): the attribute name.
Returns:
list: list of the blocks attribute.
"""
attrs
=
[]
for
i
in
self
.
blocks_attr_ids
(
name
):
assert
(
i
>=
0
and
i
<
len
(
self
.
block
.
program
.
blocks
))
attrs
.
append
(
self
.
block
.
program
.
blocks
[
i
])
return
attrs
def
blocks_attr_ids
(
self
,
name
):
"""
Get the blocks attribute's ids by name.
Args:
name(str): the attribute name.
Returns:
list: list of the blocks ids.
"""
return
self
.
desc
.
blocks_attr_ids
(
name
)
def
all_attrs
(
self
):
"""
Get the attribute dict.
Returns:
dict: The Operator's attribute dict.
dict: The Operator's attribute dict
, name->attr
.
"""
attr_names
=
self
.
attr_names
attr_map
=
{}
for
n
in
attr_names
:
if
n
==
'sub_block'
:
attr_type
=
self
.
desc
.
attr_type
(
n
)
if
attr_type
==
core
.
AttrType
.
BLOCK
:
attr_map
[
n
]
=
self
.
block_attr
(
n
)
else
:
attr_map
[
n
]
=
self
.
attr
(
n
)
continue
if
attr_type
==
core
.
AttrType
.
BLOCKS
:
attr_map
[
n
]
=
self
.
blocks_attr
(
n
)
continue
attr_map
[
n
]
=
self
.
attr
(
n
)
return
attr_map
...
...
@@ -1518,11 +1570,17 @@ class Program(object):
The two code snippets above will generate same programs.
"""
if
for_test
:
p
=
self
.
inference_optimize
()
p
=
self
.
inference_optimize
(
export_for_deployment
=
False
)
else
:
p
=
Program
()
p
.
current_block_idx
=
self
.
current_block_idx
p
.
_seed
=
self
.
_seed
p
.
desc
=
core
.
ProgramDesc
(
self
.
desc
)
p
.
blocks
=
[
Block
(
p
,
i
)
for
i
in
range
(
self
.
desc
.
num_blocks
())]
p
.
blocks
=
[
Block
(
p
,
i
)
for
i
in
xrange
(
self
.
desc
.
num_blocks
())]
p
.
_current_role
=
self
.
_current_role
p
.
_op_role_var
=
self
.
_op_role_var
p
.
_sync_with_cpp
()
p
.
_copy_param_info_from
(
self
)
...
...
@@ -1578,7 +1636,7 @@ class Program(object):
res
.
_sync_with_cpp
()
return
res
def
inference_optimize
(
self
):
def
inference_optimize
(
self
,
export_for_deployment
=
True
):
"""
This method will create a new program and do following adjustments on it:
1. Remove all reader variables and their creator ops if exist.
...
...
@@ -1589,6 +1647,10 @@ class Program(object):
attribute of operators to :code:`True`. All the :code:`Parameter`
information will be lost.
Args:
export_for_deployment(bool): remove the read ops that are added by py_reader
for cpp inference library
Notes: This API is a very low level API. Use
:code:`Program.clone(for_test=True)` instead.
...
...
@@ -1603,16 +1665,17 @@ class Program(object):
# remove all readers and the read_op if exist
read_op_idx
=
0
root_block
=
res
.
desc
.
block
(
0
)
while
True
:
if
read_op_idx
>=
root_block
.
op_size
()
or
root_block
.
op
(
read_op_idx
).
type
()
==
'read'
:
break
read_op_idx
+=
1
if
read_op_idx
<
root_block
.
op_size
():
root_block
.
_remove_op
(
0
,
read_op_idx
+
1
)
for
var
in
root_block
.
all_vars
():
if
var
.
type
()
==
core
.
VarDesc
.
VarType
.
READER
:
root_block
.
_remove_var
(
var
.
name
())
if
export_for_deployment
:
while
True
:
if
read_op_idx
>=
root_block
.
op_size
()
or
root_block
.
op
(
read_op_idx
).
type
()
==
'read'
:
break
read_op_idx
+=
1
if
read_op_idx
<
root_block
.
op_size
():
root_block
.
_remove_op
(
0
,
read_op_idx
+
1
)
for
var
in
root_block
.
all_vars
():
if
var
.
type
()
==
core
.
VarDesc
.
VarType
.
READER
:
root_block
.
_remove_var
(
var
.
name
())
# change all `is_test` attributes to True
for
i
in
range
(
res
.
desc
.
num_blocks
()):
...
...
python/paddle/fluid/initializer.py
浏览文件 @
265302ed
...
...
@@ -264,7 +264,8 @@ class NormalInitializer(Initializer):
"dtype"
:
int
(
var
.
dtype
),
"mean"
:
self
.
_mean
,
"std"
:
self
.
_std_dev
,
"seed"
:
self
.
_seed
"seed"
:
self
.
_seed
,
"use_mkldnn"
:
False
})
var
.
op
=
op
return
op
...
...
python/paddle/fluid/io.py
浏览文件 @
265302ed
...
...
@@ -555,7 +555,8 @@ def save_inference_model(dirname,
executor
,
main_program
=
None
,
model_filename
=
None
,
params_filename
=
None
):
params_filename
=
None
,
export_for_deployment
=
True
):
"""
Prune the given `main_program` to build a new program especially for inference,
and then save it and all related parameters to given `dirname` by the `executor`.
...
...
@@ -577,6 +578,8 @@ def save_inference_model(dirname,
params_filename(str|None): The name of file to save all related parameters.
If it is setted None, parameters will be saved
in separate files .
export_for_deployment(bool): remove the read ops that are added by py_reader
for cpp inference lib. Default True
Returns:
None
...
...
@@ -643,7 +646,8 @@ def save_inference_model(dirname,
copy_program
.
desc
.
flush
()
pruned_program
=
copy_program
.
prune
(
targets
=
target_vars
)
inference_program
=
pruned_program
.
inference_optimize
()
inference_program
=
pruned_program
.
inference_optimize
(
export_for_deployment
=
export_for_deployment
)
fetch_var_names
=
[
v
.
name
for
v
in
target_vars
]
prepend_feed_ops
(
inference_program
,
feeded_var_names
)
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
265302ed
...
...
@@ -20,7 +20,9 @@ from .layer_function_generator import autodoc, templatedoc
from
..layer_helper
import
LayerHelper
from
.
import
tensor
from
.
import
nn
from
.
import
ops
import
math
import
numpy
from
functools
import
reduce
__all__
=
[
...
...
@@ -264,10 +266,11 @@ def detection_output(loc,
prior_box_var
=
prior_box_var
,
target_box
=
loc
,
code_type
=
'decode_center_size'
)
old_shape
=
scores
.
shape
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
(
-
1
,
old_shape
[
-
1
]))
compile_shape
=
scores
.
shape
run_shape
=
ops
.
shape
(
scores
)
scores
=
nn
.
flatten
(
x
=
scores
,
axis
=
2
)
scores
=
nn
.
softmax
(
input
=
scores
)
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
old
_shape
)
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
compile_shape
,
actual_shape
=
run
_shape
)
scores
=
nn
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
])
scores
.
stop_gradient
=
True
nmsed_outs
=
helper
.
create_tmp_variable
(
dtype
=
decoded_box
.
dtype
)
...
...
@@ -677,9 +680,10 @@ def ssd_loss(location,
raise
ValueError
(
"Only support mining_type == max_negative now."
)
num
,
num_prior
,
num_class
=
confidence
.
shape
conf_shape
=
ops
.
shape
(
confidence
)
def
__reshape_to_2d
(
var
):
return
nn
.
reshape
(
x
=
var
,
shape
=
[
-
1
,
var
.
shape
[
-
1
]]
)
return
nn
.
flatten
(
x
=
var
,
axis
=
2
)
# 1. Find matched boundding box by prior box.
# 1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
...
...
@@ -690,7 +694,8 @@ def ssd_loss(location,
# 2. Compute confidence for mining hard examples
# 2.1. Get the target label based on matched indices
gt_label
=
nn
.
reshape
(
x
=
gt_label
,
shape
=
gt_label
.
shape
+
(
1
,
))
gt_label
=
nn
.
reshape
(
x
=
gt_label
,
shape
=
(
len
(
gt_label
.
shape
)
-
1
)
*
(
0
,
)
+
(
-
1
,
1
))
gt_label
.
stop_gradient
=
True
target_label
,
_
=
target_assign
(
gt_label
,
matched_indices
,
mismatch_value
=
background_label
)
...
...
@@ -701,9 +706,12 @@ def ssd_loss(location,
target_label
=
__reshape_to_2d
(
target_label
)
target_label
.
stop_gradient
=
True
conf_loss
=
nn
.
softmax_with_cross_entropy
(
confidence
,
target_label
)
# 3. Mining hard examples
conf_loss
=
nn
.
reshape
(
x
=
conf_loss
,
shape
=
(
num
,
num_prior
))
conf_loss
=
nn
.
reshape
(
x
=
conf_loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
ops
.
slice
(
conf_shape
,
axes
=
[
0
],
starts
=
[
0
],
ends
=
[
2
]))
conf_loss
.
stop_gradient
=
True
neg_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
dtype
=
matched_indices
.
dtype
...
...
@@ -772,7 +780,11 @@ def ssd_loss(location,
# 5.3 Compute overall weighted loss.
loss
=
conf_loss_weight
*
conf_loss
+
loc_loss_weight
*
loc_loss
# reshape to [N, Np], N is the batch size and Np is the prior box number.
loss
=
nn
.
reshape
(
x
=
loss
,
shape
=
[
-
1
,
num_prior
])
loss
=
nn
.
reshape
(
x
=
loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
ops
.
slice
(
conf_shape
,
axes
=
[
0
],
starts
=
[
0
],
ends
=
[
2
]))
loss
=
nn
.
reduce_sum
(
loss
,
dim
=
1
,
keep_dim
=
True
)
if
normalize
:
normalizer
=
nn
.
reduce_sum
(
target_loc_weight
)
...
...
@@ -1005,13 +1017,7 @@ def multi_box_head(inputs,
"""
def
_reshape_with_axis_
(
input
,
axis
=
1
):
if
not
(
axis
>
0
and
axis
<
len
(
input
.
shape
)):
raise
ValueError
(
"The axis should be smaller than "
"the arity of input and bigger than 0."
)
new_shape
=
[
-
1
,
reduce
(
lambda
x
,
y
:
x
*
y
,
input
.
shape
[
axis
:
len
(
input
.
shape
)])
]
out
=
nn
.
reshape
(
x
=
input
,
shape
=
new_shape
)
out
=
nn
.
flatten
(
x
=
input
,
axis
=
axis
)
return
out
def
_is_list_or_tuple_
(
data
):
...
...
@@ -1101,11 +1107,13 @@ def multi_box_head(inputs,
stride
=
stride
)
mbox_loc
=
nn
.
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
new
_shape
=
[
compile
_shape
=
[
mbox_loc
.
shape
[
0
],
mbox_loc
.
shape
[
1
]
*
mbox_loc
.
shape
[
2
]
*
mbox_loc
.
shape
[
3
]
/
4
,
4
]
mbox_loc_flatten
=
nn
.
reshape
(
mbox_loc
,
shape
=
new_shape
)
run_shape
=
tensor
.
assign
(
numpy
.
array
([
0
,
-
1
,
4
]).
astype
(
"int32"
))
mbox_loc_flatten
=
nn
.
reshape
(
mbox_loc
,
shape
=
compile_shape
,
actual_shape
=
run_shape
)
mbox_locs
.
append
(
mbox_loc_flatten
)
# get conf
...
...
@@ -1117,11 +1125,15 @@ def multi_box_head(inputs,
padding
=
pad
,
stride
=
stride
)
conf_loc
=
nn
.
transpose
(
conf_loc
,
perm
=
[
0
,
2
,
3
,
1
])
new_shape
=
[
new_shape
=
[
0
,
-
1
,
num_classes
]
compile_shape
=
[
conf_loc
.
shape
[
0
],
conf_loc
.
shape
[
1
]
*
conf_loc
.
shape
[
2
]
*
conf_loc
.
shape
[
3
]
/
num_classes
,
num_classes
]
conf_loc_flatten
=
nn
.
reshape
(
conf_loc
,
shape
=
new_shape
)
run_shape
=
tensor
.
assign
(
numpy
.
array
([
0
,
-
1
,
num_classes
]).
astype
(
"int32"
))
conf_loc_flatten
=
nn
.
reshape
(
conf_loc
,
shape
=
compile_shape
,
actual_shape
=
run_shape
)
mbox_confs
.
append
(
conf_loc_flatten
)
if
len
(
box_results
)
==
1
:
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
265302ed
...
...
@@ -112,6 +112,7 @@ __all__ = [
'log'
,
'crop'
,
'rank_loss'
,
'flatten'
,
]
...
...
@@ -5361,3 +5362,70 @@ def rank_loss(label, left, right, name=None):
"Right"
:
right
},
outputs
=
{
'Out'
:
out
})
return
out
def
flatten
(
x
,
axis
=
1
,
name
=
None
):
"""
**Flatten layer**
Flattens the input tensor into a 2D matrix.
Examples:
Case 1:
Given
X.shape = (3, 100, 100, 4)
and
axis = 2
We get:
Out.shape = (3 * 100, 4 * 100)
Case 2:
Given
X.shape = (3, 100, 100, 4)
and
axis = 0
We get:
Out.shape = (1, 3 * 100 * 100 * 4)
Args:
x (Variable): A tensor of rank >= axis.
axis (int): Indicate up to which input dimensions (exclusive) should
be flattened to the outer dimension of the output.
The value for axis must be in the range [0, R], where R
is the rank of the input tensor. When axis = 0, the shape
of the output tensor is (1, (d_0 X d_1 ... d_n), where the
shape of the input tensor is (d_0, d_1, ... d_n).
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: A 2D tensor with the contents of the input tensor, with input
dimensions up to axis flattened to the outer dimension of
the output and remaining input dimensions flattened into the
inner dimension of the output.
Raises:
ValueError: If x is not a variable.
ValueError: If axis is not in range [0, rank(x)].
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
out = fluid.layers.flatten(x=x, axis=2)
"""
helper
=
LayerHelper
(
'flatten'
,
**
locals
())
if
not
(
isinstance
(
x
,
Variable
)):
raise
ValueError
(
"The input x should be a Variable"
)
if
not
(
isinstance
(
axis
,
int
))
or
axis
>
len
(
x
.
shape
)
or
axis
<
0
:
raise
ValueError
(
"The axis should be a int, and in range [0, rank(x)]"
)
out
=
helper
.
create_tmp_variable
(
x
.
dtype
)
helper
.
append_op
(
type
=
'flatten'
,
inputs
=
{
"X"
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
"axis"
:
axis
})
return
out
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
浏览文件 @
265302ed
...
...
@@ -105,5 +105,107 @@ class TestCrossEntropyOp3(OpTest):
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp4
(
OpTest
):
"""Test high rank tensor cross-entropy with discrete one-hot labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
10
,
2
,
4
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
10
X_2d
=
randomize_probability
(
ins_num
,
class_num
,
dtype
=
'float64'
)
label_2d
=
np
.
random
.
randint
(
0
,
class_num
,
(
ins_num
,
1
),
dtype
=
"int64"
)
cross_entropy_2d
=
np
.
asmatrix
(
[[
-
np
.
log
(
X_2d
[
i
][
label_2d
[
i
][
0
]])]
for
i
in
range
(
X_2d
.
shape
[
0
])],
dtype
=
"float64"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
1
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
False
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Y"
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp5
(
OpTest
):
"""Test high rank tensor cross-entropy with vectorized soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
4
,
3
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
37
X_2d
=
randomize_probability
(
ins_num
,
class_num
)
label_2d
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
ins_num
,
class_num
]).
astype
(
"float32"
)
label_2d
/=
label_2d
.
sum
(
axis
=
1
,
keepdims
=
True
)
cross_entropy_2d
=
(
-
label_2d
*
np
.
log
(
X_2d
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
class_num
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp6
(
OpTest
):
"""Test high rank tensor cross-entropy with vectorized one-hot representation of labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
4
,
3
,
2
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
17
X_2d
=
randomize_probability
(
ins_num
,
class_num
)
label_index_2d
=
np
.
random
.
randint
(
0
,
class_num
,
(
ins_num
),
dtype
=
"int32"
)
label_2d
=
np
.
zeros
(
X_2d
.
shape
)
label_2d
[
np
.
arange
(
ins_num
),
label_index_2d
]
=
1
cross_entropy_2d
=
np
.
asmatrix
(
[[
-
np
.
log
(
X_2d
[
i
][
label_index_2d
[
i
]])]
for
i
in
range
(
X_2d
.
shape
[
0
])],
dtype
=
"float32"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
class_num
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
.
astype
(
np
.
float32
)}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_desc_clone.py
0 → 100644
浏览文件 @
265302ed
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
import
collections
SEED
=
1
DTYPE
=
"float32"
paddle
.
dataset
.
mnist
.
fetch
()
# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def
cnn_model
(
data
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
data
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE
=
10
input_shape
=
conv_pool_2
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
predict
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
SIZE
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)))
return
predict
def
get_model
(
batch_size
):
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
predict
=
cnn_model
(
images
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
batch_size_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size_tensor
)
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
)
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
opt
.
minimize
(
avg_cost
)
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
def
get_transpiler
(
trainer_id
,
main_program
,
pserver_endpoints
,
trainers
):
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
=
trainer_id
,
program
=
main_program
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
return
t
def
operator_equal
(
a
,
b
):
for
k
,
v
in
a
.
__dict__
.
iteritems
():
if
isinstance
(
v
,
fluid
.
framework
.
Program
)
or
\
isinstance
(
v
,
fluid
.
framework
.
Block
):
continue
elif
isinstance
(
v
,
core
.
OpDesc
):
if
v
.
serialize_to_string
()
!=
b
.
__dict__
[
k
].
serialize_to_string
():
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
elif
isinstance
(
v
,
collections
.
OrderedDict
):
v0
=
sorted
(
v
.
iteritems
(),
key
=
lambda
x
:
x
[
0
])
v1
=
sorted
(
b
.
__dict__
[
k
].
iteritems
(),
key
=
lambda
x
:
x
[
0
])
if
v0
!=
v1
:
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
elif
(
v
!=
b
.
__dict__
[
k
]):
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
return
True
def
block_equal
(
a
,
b
):
for
k
,
v
in
a
.
__dict__
.
iteritems
():
if
isinstance
(
v
,
core
.
ProgramDesc
)
or
isinstance
(
v
,
fluid
.
framework
.
Program
)
or
isinstance
(
v
,
core
.
BlockDesc
):
continue
elif
k
==
"ops"
:
for
i
in
range
(
0
,
len
(
a
.
ops
)):
if
not
operator_equal
(
a
.
ops
[
i
],
b
.
ops
[
i
]):
raise
ValueError
(
"In block_equal not equal:{0}
\n
"
.
format
(
k
))
assert
(
len
(
a
.
ops
)
==
len
(
b
.
ops
))
elif
isinstance
(
v
,
collections
.
OrderedDict
):
v0
=
sorted
(
v
.
iteritems
(),
key
=
lambda
x
:
x
[
0
])
v1
=
sorted
(
b
.
__dict__
[
k
].
iteritems
(),
key
=
lambda
x
:
x
[
0
])
if
v0
!=
v1
:
raise
ValueError
(
"In block_equal not equal:{0}
\n
"
.
format
(
k
))
elif
(
v
!=
b
.
__dict__
[
k
]):
raise
ValueError
(
"In block_equal not equal:{0}
\n
"
.
format
(
k
))
return
True
def
program_equal
(
a
,
b
):
for
k
,
v
in
a
.
__dict__
.
iteritems
():
if
isinstance
(
v
,
core
.
ProgramDesc
):
continue
elif
k
==
'blocks'
:
for
i
in
range
(
0
,
len
(
a
.
blocks
)):
if
not
block_equal
(
a
.
blocks
[
i
],
b
.
blocks
[
i
]):
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
return
False
assert
(
len
(
a
.
blocks
)
==
len
(
b
.
blocks
))
elif
(
v
!=
b
.
__dict__
[
k
]):
raise
ValueError
(
"In program_equal not equal:{0}
\n
"
.
format
(
k
))
return
True
class
TestDistMnist
(
unittest
.
TestCase
):
def
test_desc_clone
(
self
):
get_model
(
batch_size
=
20
)
pserver_endpoints
=
"127.0.0.1:9123"
trainers
=
1
current_endpoint
=
"127.0.0.1:9123"
t
=
get_transpiler
(
0
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
main
=
pserver_prog
.
clone
()
startup
=
startup_prog
.
clone
()
self
.
assertTrue
(
program_equal
(
main
,
pserver_prog
))
self
.
assertTrue
(
program_equal
(
startup
,
startup_prog
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
265302ed
...
...
@@ -130,7 +130,7 @@ class TestDistBase(unittest.TestCase):
self
.
_ps_endpoints
=
"127.0.0.1:9123,127.0.0.1:9124"
self
.
_python_interp
=
"python"
def
start_pserver
(
self
,
model_file
):
def
start_pserver
(
self
,
model_file
,
check_error_log
):
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
ps0_cmd
=
"%s %s pserver %s 0 %s %d TRUE"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps0_ep
,
...
...
@@ -139,11 +139,23 @@ class TestDistBase(unittest.TestCase):
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps1_ep
,
self
.
_trainers
)
ps0_pipe
=
subprocess
.
PIPE
ps1_pipe
=
subprocess
.
PIPE
if
check_error_log
:
print
(
"ps0_cmd:"
,
ps0_cmd
)
print
(
"ps1_cmd:"
,
ps1_cmd
)
ps0_pipe
=
open
(
"/tmp/ps0_err.log"
,
"wb"
)
ps1_pipe
=
open
(
"/tmp/ps1_err.log"
,
"wb"
)
ps0_proc
=
subprocess
.
Popen
(
ps0_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
ps0_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
ps0_pipe
)
ps1_proc
=
subprocess
.
Popen
(
ps1_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
return
ps0_proc
,
ps1_proc
ps1_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
ps1_pipe
)
if
not
check_error_log
:
return
ps0_proc
,
ps1_proc
,
None
,
None
else
:
return
ps0_proc
,
ps1_proc
,
ps0_pipe
,
ps1_pipe
def
_wait_ps_ready
(
self
,
pid
):
retry_times
=
50
...
...
@@ -160,7 +172,7 @@ class TestDistBase(unittest.TestCase):
(
e
,
retry_times
))
retry_times
-=
1
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
):
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
):
# *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
),
...
...
@@ -169,17 +181,32 @@ class TestDistBase(unittest.TestCase):
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
,
"FLAGS_cudnn_deterministic"
:
"1"
}
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"7"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
# Run local to get a base line
env_local
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env_local
.
update
(
required_envs
)
local_cmd
=
"%s %s trainer %s 0 %s %d FLASE"
%
\
(
self
.
_python_interp
,
model_file
,
"127.0.0.1:1234"
,
"127.0.0.1:1234"
,
1
)
local_proc
=
subprocess
.
Popen
(
local_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
env_local
)
if
not
check_error_log
:
local_proc
=
subprocess
.
Popen
(
local_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
env_local
)
else
:
print
(
"trainer cmd:"
,
local_cmd
)
err_log
=
open
(
"/tmp/trainer.err.log"
,
"wb"
)
local_proc
=
subprocess
.
Popen
(
local_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
err_log
,
env
=
env_local
)
local_proc
.
wait
()
out
,
err
=
local_proc
.
communicate
()
local_ret
=
out
...
...
@@ -187,7 +214,8 @@ class TestDistBase(unittest.TestCase):
sys
.
stderr
.
write
(
'local_stderr: %s
\n
'
%
err
)
# Run dist train to compare with local results
ps0
,
ps1
=
self
.
start_pserver
(
model_file
)
ps0
,
ps1
,
ps0_pipe
,
ps1_pipe
=
self
.
start_pserver
(
model_file
,
check_error_log
)
self
.
_wait_ps_ready
(
ps0
.
pid
)
self
.
_wait_ps_ready
(
ps1
.
pid
)
...
...
@@ -205,15 +233,23 @@ class TestDistBase(unittest.TestCase):
env1
.
update
(
required_envs
)
FNULL
=
open
(
os
.
devnull
,
'w'
)
tr0_pipe
=
subprocess
.
PIPE
tr1_pipe
=
subprocess
.
PIPE
if
check_error_log
:
print
(
"tr0_cmd:"
,
tr0_cmd
)
print
(
"tr1_cmd:"
,
tr1_cmd
)
tr0_pipe
=
open
(
"/tmp/tr0_err.log"
,
"wb"
)
tr1_pipe
=
open
(
"/tmp/tr1_err.log"
,
"wb"
)
tr0_proc
=
subprocess
.
Popen
(
tr0_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
stderr
=
tr0_pipe
,
env
=
env0
)
tr1_proc
=
subprocess
.
Popen
(
tr1_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
stderr
=
tr1_pipe
,
env
=
env1
)
tr0_proc
.
wait
()
...
...
@@ -230,6 +266,13 @@ class TestDistBase(unittest.TestCase):
local_first_loss
=
eval
(
local_lines
[
0
])[
0
]
local_last_loss
=
eval
(
local_lines
[
1
])[
0
]
# close trainer file
if
check_error_log
:
tr0_pipe
.
close
()
tr1_pipe
.
close
()
ps0_pipe
.
close
()
ps1_pipe
.
close
()
# FIXME: use terminate() instead of sigkill.
os
.
kill
(
ps0
.
pid
,
signal
.
SIGKILL
)
os
.
kill
(
ps1
.
pid
,
signal
.
SIGKILL
)
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
265302ed
...
...
@@ -259,7 +259,7 @@ class TestLRDecayConditional(TranspilerTest):
serv_op
=
pserver
.
blocks
[
0
].
ops
[
0
]
sub_blocks
=
[]
optimize_blocks
=
[]
for
b
in
serv_op
.
a
ttrs
[
"optimize_blocks"
]:
for
b
in
serv_op
.
a
ll_attrs
()
[
"optimize_blocks"
]:
optimize_blocks
.
append
(
b
.
idx
)
for
b
in
pserver
.
blocks
:
if
b
.
idx
not
in
optimize_blocks
:
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
265302ed
...
...
@@ -465,6 +465,17 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_flatten
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
append_batch_size
=
False
,
shape
=
[
4
,
4
,
3
],
dtype
=
"float32"
)
out
=
layers
.
flatten
(
x
,
axis
=
1
,
name
=
"flatten"
)
self
.
assertIsNotNone
(
out
)
def
test_shape
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_program.py
浏览文件 @
265302ed
...
...
@@ -17,6 +17,7 @@ import unittest
from
paddle.fluid.framework
import
Program
,
default_main_program
,
program_guard
,
grad_var_name
import
paddle.fluid.layers
as
layers
import
paddle.fluid
as
fluid
main_program
=
default_main_program
()
...
...
@@ -98,6 +99,39 @@ class TestProgram(unittest.TestCase):
new_program
=
main_program
.
clone
()
self
.
assertNotEqual
(
0
,
len
(
new_program
.
blocks
[
0
].
all_parameters
()))
def
test_program_inference_optimize
(
self
):
def
net
():
reader
=
fluid
.
layers
.
py_reader
(
capacity
=
10
,
shapes
=
[[
-
1
,
10
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
],
use_double_buffer
=
True
)
in_data
,
label
=
fluid
.
layers
.
read_file
(
reader
)
predict_label
=
fluid
.
layers
.
fc
(
in_data
,
size
=
2
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
cross_entropy
(
input
=
predict_label
,
label
=
label
))
optimizer
=
fluid
.
optimizer
.
Adam
()
optimizer
.
minimize
(
loss
)
startup_program
=
fluid
.
Program
()
main_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
net
()
no_read_program
=
main_program
.
inference_optimize
()
keep_read_program
=
main_program
.
inference_optimize
(
export_for_deployment
=
False
)
no_read_ops
=
no_read_program
.
global_block
().
ops
keep_read_ops
=
keep_read_program
.
global_block
().
ops
self
.
assertEqual
(
len
(
keep_read_ops
)
-
len
(
no_read_ops
),
2
)
self
.
assertEqual
(
keep_read_ops
[
0
].
type
,
'create_double_buffer_reader'
)
self
.
assertEqual
(
keep_read_ops
[
1
].
type
,
'read'
)
for
i
in
range
(
len
(
no_read_ops
)):
self
.
assertEqual
(
no_read_ops
[
i
].
type
,
keep_read_ops
[
i
+
2
].
type
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_protobuf_descs.py
浏览文件 @
265302ed
...
...
@@ -68,7 +68,7 @@ class TestOpDesc(unittest.TestCase):
self
.
assertEqual
(
8
,
len
(
op
.
attr_names
()))
op
.
set_block_attr
(
"block_attr"
,
program_desc
.
block
(
0
))
self
.
assertEqual
(
0
,
op
.
block_attr
(
"block_attr"
))
self
.
assertEqual
(
0
,
op
.
block_attr
_id
(
"block_attr"
))
mul_op
=
block
.
append_op
()
mul_op
.
set_type
(
"mul"
)
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
265302ed
...
...
@@ -530,7 +530,10 @@ class DistributeTranspiler(object):
pserver_program
.
_sync_with_cpp
()
return
pserver_program
def
get_startup_program
(
self
,
endpoint
,
pserver_program
):
def
get_startup_program
(
self
,
endpoint
,
pserver_program
,
startup_program
=
None
):
"""
Get startup program for current parameter server.
Modify operator input variables if there are variables that
...
...
@@ -540,12 +543,17 @@ class DistributeTranspiler(object):
endpoint (str): current pserver endpoint.
pserver_program (Program): call get_pserver_program first and
pass the result here.
startup_program (Program): if pass None, will use
default_startup_program
Returns:
Program: parameter server side startup program.
"""
s_prog
=
Program
()
orig_s_prog
=
default_startup_program
()
if
not
startup_program
:
orig_s_prog
=
default_startup_program
()
else
:
orig_s_prog
=
startup_program
s_prog
.
random_seed
=
orig_s_prog
.
random_seed
params
=
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
...
...
@@ -584,12 +592,12 @@ class DistributeTranspiler(object):
if
op
.
type
in
[
"gaussian_random"
,
"fill_constant"
,
"uniform_random"
]:
op
.
attrs
[
"shape"
]
=
new_outputs
[
"Out"
].
shape
op
.
set_attr
(
"shape"
,
list
(
new_outputs
[
"Out"
].
shape
))
s_prog
.
global_block
().
append_op
(
type
=
op
.
type
,
inputs
=
new_inputs
,
outputs
=
new_outputs
,
attrs
=
op
.
a
ttrs
)
attrs
=
op
.
a
ll_attrs
()
)
return
s_prog
# ====================== private transpiler functions =====================
...
...
@@ -603,7 +611,7 @@ class DistributeTranspiler(object):
self
.
table_name
=
None
for
op
in
self
.
origin_program
.
global_block
().
ops
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
:
if
op
.
attr
s
[
'is_distributed'
]
is
True
:
if
op
.
attr
(
'is_distributed'
)
is
True
:
if
self
.
table_name
is
None
:
self
.
table_name
=
op
.
input
(
"W"
)[
0
]
if
self
.
table_name
!=
op
.
input
(
"W"
)[
0
]:
...
...
@@ -1263,7 +1271,7 @@ class DistributeTranspiler(object):
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
outputs
=
outputs
,
attrs
=
opt_op
.
a
ttrs
)
attrs
=
opt_op
.
a
ll_attrs
()
)
def
_is_splited_grad_var
(
self
,
var
,
var_dict
):
grad_block
=
None
...
...
@@ -1296,7 +1304,7 @@ class DistributeTranspiler(object):
block
.
_clone_variable
(
var
)
return
block
.
append_op
(
type
=
op
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
op
.
a
ttrs
)
type
=
op
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
op
.
a
ll_attrs
()
)
def
_append_pserver_non_opt_ops
(
self
,
optimize_block
,
opt_op
):
program
=
optimize_block
.
program
...
...
@@ -1337,7 +1345,7 @@ class DistributeTranspiler(object):
type
=
opt_op
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
opt_op
.
a
ttrs
)
attrs
=
opt_op
.
a
ll_attrs
()
)
def
_is_op_connected
(
self
,
op1
,
op2
):
# If one op's input is another op's output or
...
...
@@ -1442,8 +1450,8 @@ class DistributeTranspiler(object):
# optimize
op_maker
=
core
.
op_proto_and_checker_maker
optimize_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
if
op_maker
.
kOpRoleAttrName
()
in
op
.
attrs
and
\
int
(
op
.
attrs
[
op_maker
.
kOpRoleAttrName
()])
==
int
(
optimize_role
):
if
op_maker
.
kOpRoleAttrName
()
in
op
.
attr
_name
s
and
\
int
(
op
.
all_attrs
()
[
op_maker
.
kOpRoleAttrName
()])
==
int
(
optimize_role
):
return
True
return
False
...
...
@@ -1466,8 +1474,8 @@ class DistributeTranspiler(object):
# and op_role_var to get the pair.
for
input_name
in
op
.
input_arg_names
:
if
input_name
.
find
(
"@GRAD"
)
!=
-
1
and
\
op
.
attr
s
[
RPC_OP_ROLE_ATTR_NAME
]
:
param_name
=
op
.
attr
s
[
OP_ROLE_VAR_ATTR_NAME
]
[
0
]
op
.
attr
(
RPC_OP_ROLE_ATTR_NAME
)
:
param_name
=
op
.
attr
(
OP_ROLE_VAR_ATTR_NAME
)
[
0
]
params_grads
.
append
([
origin_var_dict
[
param_name
],
origin_var_dict
[
input_name
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录