Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
25a3d2d7
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
25a3d2d7
编写于
11月 22, 2017
作者:
G
gongweibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix by comments
上级
e11d4424
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
123 addition
and
77 deletion
+123
-77
paddle/operators/block_expand_op.cc
paddle/operators/block_expand_op.cc
+2
-1
paddle/operators/block_expand_op.h
paddle/operators/block_expand_op.h
+14
-8
python/paddle/v2/fluid/tests/test_block_expand_op.py
python/paddle/v2/fluid/tests/test_block_expand_op.py
+107
-68
未找到文件。
paddle/operators/block_expand_op.cc
浏览文件 @
25a3d2d7
...
...
@@ -30,7 +30,8 @@ class BlockExpandOp : public framework::OperatorWithKernel {
"Output of BlockExpandOp op should not be null."
);
auto
in_dim
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
in_dim
.
size
(),
4
,
"Input format must be NCHW."
);
PADDLE_ENFORCE_EQ
(
in_dim
.
size
(),
4
,
"Input(X) format must be 4D tensor, eg., NCHW."
);
PADDLE_ENFORCE_GE
(
in_dim
[
0
],
1
,
"Input batchsize must >= 1."
);
int
block_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"blockHeight"
);
...
...
paddle/operators/block_expand_op.h
浏览文件 @
25a3d2d7
...
...
@@ -68,13 +68,16 @@ class BlockExpandKernel : public framework::OpKernel<T> {
img_height
,
img_width
,
block_height
,
block_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
outputHeight
,
outputWidth
);
std
::
vector
<
int
>
stride
({
stride_height
,
stride_width
});
std
::
vector
<
int
>
padding
({
padding_height
,
padding_width
});
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
Tensor
src
=
in
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
({
C
,
img_height
,
img_width
});
Tensor
dst
=
out
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
Tensor
src
=
in
->
Slice
(
i
,
i
+
1
).
Resize
({
C
,
img_height
,
img_width
});
Tensor
dst
=
out
->
Slice
(
i
,
i
+
1
).
Resize
(
{
outputHeight
,
outputWidth
,
C
,
block_height
,
block_width
});
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kOCF
,
Place
,
T
>
f
;
f
(
ctx
.
device_context
(),
src
,
dst
,
stride_height
,
stride_width
,
padding_height
,
padding_width
);
f
(
ctx
.
device_context
(),
src
,
stride
,
padding
,
&
dst
);
}
}
};
...
...
@@ -112,13 +115,16 @@ class BlockExpandGradKernel : public framework::OpKernel<T> {
img_height
,
img_width
,
block_height
,
block_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
outputHeight
,
outputWidth
);
std
::
vector
<
int
>
stride
({
stride_height
,
stride_width
});
std
::
vector
<
int
>
padding
({
padding_height
,
padding_width
});
// std::vector<int> stride({stride_height, stride_width});
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
Tensor
dst
=
d_x
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
({
C
,
img_height
,
img_width
});
Tensor
src
=
d_out
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
Tensor
dst
=
d_x
->
Slice
(
i
,
i
+
1
).
Resize
({
C
,
img_height
,
img_width
});
Tensor
src
=
d_out
->
Slice
(
i
,
i
+
1
).
Resize
(
{
outputHeight
,
outputWidth
,
C
,
block_height
,
block_width
});
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kOCF
,
Place
,
T
>
f
;
f
(
ctx
.
device_context
(),
dst
,
src
,
stride_height
,
stride_width
,
padding_height
,
padding_width
);
f
(
ctx
.
device_context
(),
dst
,
stride
,
padding
,
&
src
);
}
}
};
...
...
python/paddle/v2/fluid/tests/test_block_expand_op.py
浏览文件 @
25a3d2d7
...
...
@@ -4,27 +4,27 @@ from op_test import OpTest
def
get_output_shape
(
attrs
,
x
):
img
H
eight
=
x
.
shape
[
1
]
img
W
idth
=
x
.
shape
[
2
]
img
_h
eight
=
x
.
shape
[
1
]
img
_w
idth
=
x
.
shape
[
2
]
padding
H
eight
=
attrs
[
'paddingHeight'
]
padding
W
idth
=
attrs
[
'paddingWidth'
]
block
H
eight
=
attrs
[
'blockHeight'
]
block
W
idth
=
attrs
[
'blockWidth'
]
stride
H
eight
=
attrs
[
'strideHeight'
]
stride
W
idth
=
attrs
[
'strideWidth'
]
padding
_h
eight
=
attrs
[
'paddingHeight'
]
padding
_w
idth
=
attrs
[
'paddingWidth'
]
block
_h
eight
=
attrs
[
'blockHeight'
]
block
_w
idth
=
attrs
[
'blockWidth'
]
stride
_h
eight
=
attrs
[
'strideHeight'
]
stride
_w
idth
=
attrs
[
'strideWidth'
]
output
H
eight
=
\
output
_h
eight
=
\
1
+
\
(
img
Height
+
2
*
paddingHeight
-
blockHeight
+
strideH
eight
-
1
)
/
\
(
img
_height
+
2
*
padding_height
-
block_height
+
stride_h
eight
-
1
)
/
\
strideHeight
output
W
idth
=
\
output
_w
idth
=
\
1
+
\
(
img
Width
+
2
*
paddingWidth
-
blockWidth
+
strideW
idth
-
1
)
/
\
stride
W
idth
(
img
_width
+
2
*
padding_width
-
block_width
+
stride_w
idth
-
1
)
/
\
stride
_w
idth
return
output
Height
,
outputW
idth
return
output
_height
,
output_w
idth
def
im2col
(
attrs
,
im
,
col
):
...
...
@@ -34,38 +34,39 @@ def im2col(attrs, im, col):
{outputHeight, outputWidth, inputChannels, filterHeight, filterWidth}
"""
input_channels
=
im
.
shape
[
0
]
input
H
eight
=
im
.
shape
[
1
]
input
W
idth
=
im
.
shape
[
2
]
input
_h
eight
=
im
.
shape
[
1
]
input
_w
idth
=
im
.
shape
[
2
]
output
H
eight
=
col
.
shape
[
0
]
output
W
idth
=
col
.
shape
[
1
]
filter
H
eight
=
col
.
shape
[
3
]
filter
W
idth
=
col
.
shape
[
4
]
output
_h
eight
=
col
.
shape
[
0
]
output
_w
idth
=
col
.
shape
[
1
]
filter
_h
eight
=
col
.
shape
[
3
]
filter
_w
idth
=
col
.
shape
[
4
]
stride
H
eight
=
attrs
[
'strideHeight'
]
stride
W
idth
=
attrs
[
'strideWidth'
]
padding
H
eight
=
attrs
[
'paddingHeight'
]
padding
W
idth
=
attrs
[
'paddingWidth'
]
stride
_h
eight
=
attrs
[
'strideHeight'
]
stride
_w
idth
=
attrs
[
'strideWidth'
]
padding
_h
eight
=
attrs
[
'paddingHeight'
]
padding
_w
idth
=
attrs
[
'paddingWidth'
]
for
col_row_idx
in
range
(
0
,
output
H
eight
):
for
col_col_idx
in
range
(
0
,
output
W
idth
):
for
col_row_idx
in
range
(
0
,
output
_h
eight
):
for
col_col_idx
in
range
(
0
,
output
_w
idth
):
for
channel
in
range
(
0
,
input_channels
):
for
filter_row_idx
in
range
(
0
,
filter
H
eight
):
for
filter_col_idx
in
range
(
0
,
filter
W
idth
):
im_row_offset
=
col_row_idx
*
stride
H
eight
\
+
filter_row_idx
-
padding
H
eight
for
filter_row_idx
in
range
(
0
,
filter
_h
eight
):
for
filter_col_idx
in
range
(
0
,
filter
_w
idth
):
im_row_offset
=
col_row_idx
*
stride
_h
eight
\
+
filter_row_idx
-
padding
_h
eight
im_col_offset
=
col_col_idx
*
stride
W
idth
\
+
filter_col_idx
-
padding
W
idth
im_col_offset
=
col_col_idx
*
stride
_w
idth
\
+
filter_col_idx
-
padding
_w
idth
if
(
im_row_offset
<
0
or
im_row_offset
>=
inputHeight
or
if
(
im_row_offset
<
0
or
im_row_offset
>=
input_height
or
im_col_offset
<
0
or
im_col_offset
>=
input
W
idth
):
im_col_offset
>=
input
_w
idth
):
col
[
col_row_idx
][
col_col_idx
][
channel
][
\
filter_row_idx
][
filter_col_idx
]
=
0.0
else
:
im_offset
=
(
channel
*
input
H
eight
+
im_row_offset
\
)
*
input
W
idth
+
im_col_offset
im_offset
=
(
channel
*
input
_h
eight
+
im_row_offset
\
)
*
input
_w
idth
+
im_col_offset
col
[
col_row_idx
][
col_col_idx
][
channel
][
\
filter_row_idx
][
filter_col_idx
]
=
im
[
channel
][
\
...
...
@@ -76,55 +77,55 @@ def col2img(attrs, col, img):
"""
img: {CHW}
col:
{output
H
eight, outputWidth, inputChannels, filterHeight, filterWidth}
{output
_h
eight, outputWidth, inputChannels, filterHeight, filterWidth}
"""
input_channels
=
im
.
shape
[
0
]
input
H
eight
=
im
.
shape
[
1
]
input
W
idth
=
im
.
shape
[
2
]
input
_h
eight
=
im
.
shape
[
1
]
input
_w
idth
=
im
.
shape
[
2
]
output
H
eight
=
col
.
shape
[
0
]
output
W
idth
=
col
.
shape
[
1
]
filter
H
eight
=
col
.
shape
[
3
]
filter
W
idth
=
col
.
shape
[
4
]
output
_h
eight
=
col
.
shape
[
0
]
output
_w
idth
=
col
.
shape
[
1
]
filter
_h
eight
=
col
.
shape
[
3
]
filter
_w
idth
=
col
.
shape
[
4
]
stride
H
eight
=
attrs
[
'strideHeight'
]
stride
W
idth
=
attrs
[
'strideWidth'
]
padding
H
eight
=
attrs
[
'paddingHeight'
]
padding
W
idth
=
attrs
[
'paddingWidth'
]
stride
_h
eight
=
attrs
[
'strideHeight'
]
stride
_w
idth
=
attrs
[
'strideWidth'
]
padding
_h
eight
=
attrs
[
'paddingHeight'
]
padding
_w
idth
=
attrs
[
'paddingWidth'
]
for
col_row_idx
in
range
(
0
,
output
H
eight
):
for
col_col_idx
in
range
(
0
,
output
W
idth
):
for
col_row_idx
in
range
(
0
,
output
_h
eight
):
for
col_col_idx
in
range
(
0
,
output
_w
idth
):
for
channel
in
range
(
0
,
input_channels
):
for
filter_row_idx
in
range
(
0
,
filter
H
eight
):
for
filter_col_idx
in
range
(
0
,
filter
W
idth
):
for
filter_row_idx
in
range
(
0
,
filter
_h
eight
):
for
filter_col_idx
in
range
(
0
,
filter
_w
idth
):
im_row_offset
=
\
col_row_idx
*
stride
Height
+
filter_row_idx
-
paddingH
eight
col_row_idx
*
stride
_height
+
filter_row_idx
-
padding_h
eight
im_col_offset
=
\
col_col_idx
*
stride
Width
+
filter_col_idx
-
paddingW
idth
col_col_idx
*
stride
_width
+
filter_col_idx
-
padding_w
idth
if
(
im_row_offset
>=
0
and
im_row_offset
<
input
H
eight
and
im_row_offset
<
input
_h
eight
and
im_col_offset
>=
0
and
im_col_offset
<
input
W
idth
):
im_col_offset
<
input
_w
idth
):
im
[
channel
][
im_row_offset
][
im_col_offset
]
=
\
col
[
col_row_idx
][
col_col_idx
][
channel
][
filter_row_idx
][
filter_col_idx
]
class
TestBlockExpandOp
(
OpTest
):
def
get_input_data
(
self
,
C
,
H
,
W
):
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
C
,
H
,
W
]).
astype
(
"float32"
)
for
c
in
range
(
0
,
C
):
for
h
in
range
(
0
,
H
):
for
w
in
range
(
0
,
W
):
#x[c][h][w] = c * H * W + h *W + w
x
[
c
][
h
][
w
]
=
0.2
+
0.01
*
(
c
*
H
*
W
+
h
*
W
+
w
)
def
get_input_data
(
C
,
H
,
W
):
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
C
,
H
,
W
]).
astype
(
"float32"
)
for
c
in
range
(
0
,
C
):
for
h
in
range
(
0
,
H
):
for
w
in
range
(
0
,
W
):
#x[c][h][w] = c * H * W + h *W + w
x
[
c
][
h
][
w
]
=
0.2
+
0.01
*
(
c
*
H
*
W
+
h
*
W
+
w
)
return
x
class
TestBlockExpandOp
(
OpTest
):
def
setUp
(
self
):
C
=
3
H
=
4
W
=
4
x
=
self
.
get_input_data
(
C
,
H
,
W
)
#print x
x
=
get_input_data
(
C
,
H
,
W
)
attrs
=
{
'blockHeight'
:
2
,
...
...
@@ -135,9 +136,47 @@ class TestBlockExpandOp(OpTest):
'paddingWidth'
:
1
,
}
outputHeight
,
outputWidth
=
get_output_shape
(
attrs
,
x
)
output_height
,
output_width
=
get_output_shape
(
attrs
,
x
)
out
=
np
.
random
.
uniform
(
0.1
,
1
,
\
[
output_height
,
output_width
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
]]).
astype
(
"float32"
)
self
.
op_type
=
"block_expand"
self
.
inputs
=
{
'X'
:
x
.
reshape
(
1
,
C
,
H
,
W
)}
self
.
attrs
=
attrs
im2col
(
attrs
,
x
,
out
)
self
.
outputs
=
{
'Out'
:
out
.
reshape
(
1
,
output_height
,
output_width
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
])
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestBlockExpandOp2
(
OpTest
):
def
setUp
(
self
):
C
=
3
H
=
4
W
=
5
x
=
get_input_data
(
C
,
H
,
W
)
attrs
=
{
'blockHeight'
:
2
,
'blockWidth'
:
1
,
'strideHeight'
:
2
,
'strideWidth'
:
1
,
'paddingHeight'
:
2
,
'paddingWidth'
:
1
,
}
output_height
,
output_width
=
get_output_shape
(
attrs
,
x
)
out
=
np
.
random
.
uniform
(
0.1
,
1
,
\
[
output
Height
,
outputW
idth
,
x
.
shape
[
0
],
\
[
output
_height
,
output_w
idth
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
]]).
astype
(
"float32"
)
self
.
op_type
=
"block_expand"
...
...
@@ -146,7 +185,7 @@ class TestBlockExpandOp(OpTest):
im2col
(
attrs
,
x
,
out
)
self
.
outputs
=
{
'Out'
:
out
.
reshape
(
1
,
output
Height
,
outputW
idth
,
x
.
shape
[
0
],
\
'Out'
:
out
.
reshape
(
1
,
output
_height
,
output_w
idth
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
])
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录