Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
25318f6f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
25318f6f
编写于
5月 04, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
5月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] fix PTQ unittest timeout (#42452)
* fix PTQ unittest timeout * fix ut
上级
706b7b7f
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
30 addition
and
149 deletion
+30
-149
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_lstm_model.py
.../slim/tests/test_post_training_quantization_lstm_model.py
+8
-31
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
...ntrib/slim/tests/test_post_training_quantization_mnist.py
+21
-0
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
...slim/tests/test_post_training_quantization_mobilenetv1.py
+1
-118
未找到文件。
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_lstm_model.py
浏览文件 @
25318f6f
...
@@ -247,21 +247,21 @@ class TestPostTrainingQuantization(unittest.TestCase):
...
@@ -247,21 +247,21 @@ class TestPostTrainingQuantization(unittest.TestCase):
self
.
assertLess
(
delta_value
,
diff_threshold
)
self
.
assertLess
(
delta_value
,
diff_threshold
)
class
TestPostTraining
KLForMnist
(
TestPostTrainingQuantization
):
class
TestPostTraining
AvgForLSTM
(
TestPostTrainingQuantization
):
def
test_post_training_
kl
(
self
):
def
test_post_training_
avg
(
self
):
model_name
=
"nlp_lstm_fp32_model"
model_name
=
"nlp_lstm_fp32_model"
model_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/nlp_lstm_fp32_model.tar.gz"
model_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/nlp_lstm_fp32_model.tar.gz"
model_md5
=
"519b8eeac756e7b4b7bcb2868e880452"
model_md5
=
"519b8eeac756e7b4b7bcb2868e880452"
data_name
=
"quant_lstm_input_data"
data_name
=
"quant_lstm_input_data"
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
algo
=
"
KL
"
algo
=
"
avg
"
round_type
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"mul"
,
"lstm"
]
quantizable_op_type
=
[
"mul"
,
"lstm"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
is_optimize_model
=
False
is_optimize_model
=
False
diff_threshold
=
0.0
1
diff_threshold
=
0.0
2
infer_iterations
=
100
infer_iterations
=
100
quant_iterations
=
10
quant_iterations
=
10
self
.
run_test
(
model_name
,
model_url
,
model_md5
,
data_name
,
data_url
,
self
.
run_test
(
model_name
,
model_url
,
model_md5
,
data_name
,
data_url
,
...
@@ -270,44 +270,21 @@ class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
...
@@ -270,44 +270,21 @@ class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
diff_threshold
,
infer_iterations
,
quant_iterations
)
diff_threshold
,
infer_iterations
,
quant_iterations
)
class
TestPostTraining
KLForMnistAdaround
(
TestPostTrainingQuantization
):
class
TestPostTraining
AvgForLSTMONNXFormat
(
TestPostTrainingQuantization
):
def
test_post_training_
kl
(
self
):
def
test_post_training_
avg_onnx_format
(
self
):
model_name
=
"nlp_lstm_fp32_model"
model_name
=
"nlp_lstm_fp32_model"
model_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/nlp_lstm_fp32_model.tar.gz"
model_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/nlp_lstm_fp32_model.tar.gz"
model_md5
=
"519b8eeac756e7b4b7bcb2868e880452"
model_md5
=
"519b8eeac756e7b4b7bcb2868e880452"
data_name
=
"quant_lstm_input_data"
data_name
=
"quant_lstm_input_data"
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
algo
=
"KL"
algo
=
"avg"
round_type
=
"adaround"
quantizable_op_type
=
[
"mul"
,
"lstm"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
False
diff_threshold
=
0.01
infer_iterations
=
100
quant_iterations
=
10
self
.
run_test
(
model_name
,
model_url
,
model_md5
,
data_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingKLForMnistONNXFormat
(
TestPostTrainingQuantization
):
def
test_post_training_kl_onnx_format
(
self
):
model_name
=
"nlp_lstm_fp32_model"
model_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/nlp_lstm_fp32_model.tar.gz"
model_md5
=
"519b8eeac756e7b4b7bcb2868e880452"
data_name
=
"quant_lstm_input_data"
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
algo
=
"KL"
round_type
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"mul"
,
"lstm"
]
quantizable_op_type
=
[
"mul"
,
"lstm"
]
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
is_optimize_model
=
False
is_optimize_model
=
False
diff_threshold
=
0.0
1
diff_threshold
=
0.0
2
infer_iterations
=
100
infer_iterations
=
100
quant_iterations
=
10
quant_iterations
=
10
onnx_format
=
True
onnx_format
=
True
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
浏览文件 @
25318f6f
...
@@ -338,6 +338,27 @@ class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
...
@@ -338,6 +338,27 @@ class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
infer_iterations
,
quant_iterations
)
infer_iterations
,
quant_iterations
)
class
TestPostTrainingKLAdaroundForMnist
(
TestPostTrainingQuantization
):
def
test_post_training_kl
(
self
):
model_name
=
"mnist_model"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"KL"
round_type
=
"adaround"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingmseForMnistONNXFormat
(
TestPostTrainingQuantization
):
class
TestPostTrainingmseForMnistONNXFormat
(
TestPostTrainingQuantization
):
def
test_post_training_mse_onnx_format
(
self
):
def
test_post_training_mse_onnx_format
(
self
):
model_name
=
"mnist_model"
model_name
=
"mnist_model"
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
浏览文件 @
25318f6f
...
@@ -383,7 +383,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
...
@@ -383,7 +383,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
is_full_quantize
=
False
is_full_quantize
=
False
is_use_cache_file
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
is_optimize_model
=
True
diff_threshold
=
0.0
25
diff_threshold
=
0.0
3
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
is_optimize_model
,
diff_threshold
)
...
@@ -412,123 +412,6 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
...
@@ -412,123 +412,6 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
is_optimize_model
,
diff_threshold
)
is_optimize_model
,
diff_threshold
)
class
TestPostTrainingAvgAdaRoundForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_adaround_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"avg"
round_type
=
"adaround"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
class
TestPostTrainingAbsMaxAdaRoundForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_adaround_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"abs_max"
round_type
=
"adaround"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
class
TestPostTraininghistAdaroundForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_hist_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"hist"
round_type
=
"adaround"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
class
TestPostTrainingKLAdaroundForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_kl_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"KL"
round_type
=
"adaround"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
"pool2d"
,
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
class
TestPostTrainingEMDForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_avg_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"emd"
round_type
=
"round"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
class
TestPostTrainingAvgONNXFormatForMobilenetv1
(
TestPostTrainingQuantization
):
class
TestPostTrainingAvgONNXFormatForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_onnx_format_mobilenetv1
(
self
):
def
test_post_training_onnx_format_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
model
=
"MobileNet-V1"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录