Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
227a5112
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
227a5112
编写于
12月 14, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
12月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Sparse]Optimize performance of sparse conv on T4 (#49009)
上级
032cbfc2
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
140 addition
and
9 deletion
+140
-9
paddle/phi/kernels/sparse/gpu/conv.cu.h
paddle/phi/kernels/sparse/gpu/conv.cu.h
+105
-5
paddle/phi/kernels/sparse/gpu/conv_kernel.cu
paddle/phi/kernels/sparse/gpu/conv_kernel.cu
+2
-2
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.cu
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.cu
+7
-1
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h
+26
-1
未找到文件。
paddle/phi/kernels/sparse/gpu/conv.cu.h
浏览文件 @
227a5112
...
...
@@ -15,8 +15,14 @@ limitations under the License. */
#pragma once
#include <thrust/remove.h>
#include <thrust/sort.h>
#include <thrust/unique.h>
#ifdef __NVCC__
#include <cub/block/block_scan.cuh>
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace
cub
=
hipcub
;
#endif
#include "paddle/phi/kernels/sparse/conv_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
...
...
@@ -199,6 +205,88 @@ __global__ void UniqueKernel(const IntT* in_indexs,
}
}
inline
__device__
uint32_t
BitCount
(
const
uint32_t
data
)
{
uint32_t
count
=
data
;
count
=
(
count
&
0x55555555
)
+
((
count
>>
1
)
&
0x55555555
);
count
=
(
count
&
0x33333333
)
+
((
count
>>
2
)
&
0x33333333
);
count
=
(
count
&
0x0f0f0f0f
)
+
((
count
>>
4
)
&
0x0f0f0f0f
);
count
=
(
count
&
0x00ff00ff
)
+
((
count
>>
8
)
&
0x00ff00ff
);
count
=
(
count
&
0x0000ffff
)
+
((
count
>>
16
)
&
0x0000ffff
);
return
count
;
}
static
__global__
void
GetOutIndexsCounter
(
const
int
*
flags
,
const
int
n
,
int
*
out
)
{
int
tid
=
threadIdx
.
x
+
blockDim
.
x
*
blockIdx
.
x
;
__shared__
int
block_count
;
if
(
threadIdx
.
x
==
0
)
{
block_count
=
0
;
}
__syncthreads
();
if
(
tid
<
n
)
{
// get the count of 1 in flags[tid]
uint32_t
count
=
BitCount
(
static_cast
<
uint32_t
>
(
flags
[
tid
]));
// add to block_count
// TODO(zhangkaihuo): replace with block reduce_sum
atomicAdd
(
&
block_count
,
static_cast
<
int
>
(
count
));
}
__syncthreads
();
// write to out
if
(
threadIdx
.
x
==
0
)
{
out
[
blockIdx
.
x
]
=
block_count
;
}
}
template
<
int
BS
>
__global__
void
GetOutIndexs
(
const
int
*
flags
,
const
int
n
,
const
int
*
offsets
,
const
int
out_nnz
,
int
*
out
)
{
int
tid
=
threadIdx
.
x
+
blockDim
.
x
*
blockIdx
.
x
;
__shared__
int
block_counts
[
BS
];
__shared__
int
block_outs
[
BS
*
32
];
int
count
=
0
;
if
(
tid
<
n
)
{
// get the count of 1 in flags[tid]
int
flag
=
flags
[
tid
];
count
=
BitCount
(
static_cast
<
uint32_t
>
(
flag
));
}
// call block prefix_sum
// using namespace cub;
typedef
cub
::
BlockScan
<
int
,
BS
>
BlockScan
;
__shared__
typename
BlockScan
::
TempStorage
temp_storage
;
BlockScan
(
temp_storage
).
ExclusiveSum
(
count
,
count
);
__syncthreads
();
// write index to out
if
(
tid
<
n
)
{
// get the count of 1 in flags[tid]
int
flag
=
flags
[
tid
];
// int j = block_counts[threadIdx.x];
int
j
=
count
;
// TODO(zhangkaihuo): opt the loop
for
(
int
i
=
0
;
i
<
32
;
++
i
)
{
if
((
1
&
(
flag
>>
i
))
==
1
)
{
block_outs
[
j
++
]
=
(
tid
<<
5
)
+
i
;
}
}
}
__syncthreads
();
// write to block_outs
int
start
=
offsets
[
blockIdx
.
x
];
int
end
=
blockIdx
.
x
==
gridDim
.
x
-
1
?
out_nnz
:
offsets
[
blockIdx
.
x
+
1
];
for
(
int
i
=
threadIdx
.
x
;
i
<
end
-
start
;
i
+=
blockDim
.
x
)
{
out
[
start
+
i
]
=
block_outs
[
i
];
}
}
template
<
typename
IntT
>
__global__
void
GroupIndexs
(
const
int
*
out_index_table
,
const
int
n
,
...
...
@@ -725,13 +813,25 @@ int ProductRuleBook(const Context& dev_ctx,
gpuMemcpyDeviceToHost
,
dev_ctx
.
stream
());
dev_ctx
.
Wait
();
const
int
threads
=
256
;
const
int
blocks
=
(
index_flags
.
numel
()
+
threads
-
1
)
/
threads
;
GetOutIndexsCounter
<<<
blocks
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
index_flags_ptr
,
index_flags
.
numel
(),
out_index_table_ptr
);
#ifdef PADDLE_WITH_HIP
thrust
::
sort
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
thrust
::
exclusive_scan
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
thrust
::
sort
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
thrust
::
exclusive_scan
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
out_index_ptr
,
out_index_ptr
+
out_nnz
);
out_index_table_ptr
,
out_index_table_ptr
+
blocks
,
out_index_table_ptr
);
GetOutIndexs
<
threads
>
<<<
blocks
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
index_flags_ptr
,
index_flags
.
numel
(),
out_index_table_ptr
,
out_nnz
,
out_index_ptr
);
const
int64_t
sparse_dim
=
4
;
phi
::
DenseTensor
out_indices
=
...
...
paddle/phi/kernels/sparse/gpu/conv_kernel.cu
浏览文件 @
227a5112
...
...
@@ -125,7 +125,7 @@ void Conv3dCooGPUKernel(const GPUContext& dev_ctx,
#ifdef PADDLE_WITH_CUTLASS
bool
cutlass
=
true
;
if
(
dev_ctx
.
GetComputeCapability
()
<
80
)
cutlass
=
false
;
if
(
dev_ctx
.
GetComputeCapability
()
<
75
)
cutlass
=
false
;
if
(
in_channels
%
4
!=
0
||
out_channels
%
4
!=
0
)
{
if
(
std
::
is_same
<
T
,
phi
::
dtype
::
float16
>::
value
)
cutlass
=
false
;
if
(
std
::
is_same
<
T
,
float
>::
value
)
cutlass
=
false
;
...
...
@@ -173,7 +173,7 @@ void Conv3dCooGPUKernel(const GPUContext& dev_ctx,
if
constexpr
(
std
::
is_same
<
T
,
float
>::
value
&&
std
::
is_same
<
IntT
,
int32_t
>::
value
)
{
fp32_gather_gemm_scatter
gather_gemm_scatter
=
getBestFp32Kernel
(
M
,
N
,
K
);
getBestFp32Kernel
(
M
,
N
,
K
,
dev_ctx
.
GetComputeCapability
()
);
gather_gemm_scatter
(
dev_ctx
,
x
.
non_zero_elements
().
data
<
T
>
(),
tmp_kernel_ptr
,
...
...
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.cu
浏览文件 @
227a5112
...
...
@@ -72,7 +72,13 @@ fp16_gather_gemm_scatter getBestFp16Kernel(const int M,
}
fp32_gather_gemm_scatter
getBestFp32Kernel
(
const
int
M
,
const
int
N
,
const
int
K
)
{
const
int
K
,
const
int
SM
)
{
if
(
SM
==
75
)
{
return
launchKernel
<
float
,
cutlass_tensorop_s1688gemm_f16_64x64_32x2_nn_align4
::
Gemm
>
;
}
if
(
K
==
4
&&
N
==
16
)
{
return
launchKernel
<
float
,
...
...
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h
浏览文件 @
227a5112
...
...
@@ -66,7 +66,8 @@ fp16_gather_gemm_scatter getBestFp16Kernel(const int M,
const
int
N
);
fp32_gather_gemm_scatter
getBestFp32Kernel
(
const
int
M
,
const
int
K
,
const
int
N
);
const
int
N
,
const
int
SM
);
fp64_gather_gemm_scatter
getBestFp64Kernel
(
const
int
M
,
const
int
K
,
const
int
N
);
...
...
@@ -550,6 +551,30 @@ struct cutlass_tensorop_d884gemm_32x16_16x5_nn_align1 {
false
,
true
>
;
};
// sm75
struct
cutlass_tensorop_s1688gemm_f16_64x64_32x2_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
>
;
};
}
// namespace sparse
}
// namespace phi
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录