Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1fd95f6f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1fd95f6f
编写于
5月 15, 2017
作者:
H
helinwang
提交者:
GitHub
5月 15, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1286 from zchen0211/light_mnist
light version of cnn for MNIST
上级
d76640c8
e43f66cd
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
79 addition
and
0 deletion
+79
-0
demo/mnist/light_mnist.py
demo/mnist/light_mnist.py
+79
-0
未找到文件。
demo/mnist/light_mnist.py
0 → 100644
浏览文件 @
1fd95f6f
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers
import
*
is_predict
=
get_config_arg
(
"is_predict"
,
bool
,
False
)
####################Data Configuration ##################
if
not
is_predict
:
data_dir
=
'./data/'
define_py_data_sources2
(
train_list
=
data_dir
+
'train.list'
,
test_list
=
data_dir
+
'test.list'
,
module
=
'mnist_provider'
,
obj
=
'process'
)
######################Algorithm Configuration #############
settings
(
batch_size
=
50
,
learning_rate
=
0.001
,
learning_method
=
AdamOptimizer
())
#######################Network Configuration #############
data_size
=
1
*
28
*
28
label_size
=
10
img
=
data_layer
(
name
=
'pixel'
,
size
=
data_size
)
# light cnn
# A shallower cnn model: [CNN, BN, ReLU, Max-Pooling] x4 + FC x1
# Easier to train for mnist dataset and quite efficient
# Final performance is close to deeper ones on tasks such as digital and character classification
def
light_cnn
(
input_image
,
num_channels
,
num_classes
):
def
__light__
(
ipt
,
num_filter
=
128
,
times
=
1
,
conv_filter_size
=
3
,
dropouts
=
0
,
num_channels_
=
None
):
return
img_conv_group
(
input
=
ipt
,
num_channels
=
num_channels_
,
pool_size
=
2
,
pool_stride
=
2
,
conv_padding
=
0
,
conv_num_filter
=
[
num_filter
]
*
times
,
conv_filter_size
=
conv_filter_size
,
conv_act
=
ReluActivation
(),
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
MaxPooling
())
tmp
=
__light__
(
input_image
,
num_filter
=
128
,
num_channels_
=
num_channels
)
tmp
=
__light__
(
tmp
,
num_filter
=
128
)
tmp
=
__light__
(
tmp
,
num_filter
=
128
)
tmp
=
__light__
(
tmp
,
num_filter
=
128
,
conv_filter_size
=
1
)
tmp
=
fc_layer
(
input
=
tmp
,
size
=
num_classes
,
act
=
SoftmaxActivation
())
return
tmp
predict
=
light_cnn
(
input_image
=
img
,
num_channels
=
1
,
num_classes
=
label_size
)
if
not
is_predict
:
lbl
=
data_layer
(
name
=
"label"
,
size
=
label_size
)
inputs
(
img
,
lbl
)
outputs
(
classification_cost
(
input
=
predict
,
label
=
lbl
))
else
:
outputs
(
predict
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录