Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1f7b2516
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1f7b2516
编写于
3月 14, 2022
作者:
F
fwenguang
提交者:
GitHub
3月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add merged_momentum mlu kernel (#40406)
上级
5720537e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
537 addition
and
1 deletion
+537
-1
paddle/fluid/operators/controlflow/compare_op_mlu.cc
paddle/fluid/operators/controlflow/compare_op_mlu.cc
+1
-1
paddle/fluid/operators/optimizers/merged_momentum_op_mlu.cc
paddle/fluid/operators/optimizers/merged_momentum_op_mlu.cc
+163
-0
python/paddle/fluid/tests/unittests/mlu/test_merged_momentum_op_mlu.py
.../fluid/tests/unittests/mlu/test_merged_momentum_op_mlu.py
+373
-0
未找到文件。
paddle/fluid/operators/controlflow/compare_op_mlu.cc
浏览文件 @
1f7b2516
...
@@ -11,7 +11,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -11,7 +11,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/
operators/controlflow/compare_op
.h"
#include "paddle/fluid/
framework/op_registry
.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
paddle
{
...
...
paddle/fluid/operators/optimizers/merged_momentum_op_mlu.cc
0 → 100644
浏览文件 @
1f7b2516
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/optimizers/merged_momentum_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
MLUMergedMomentumOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
params
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Param"
);
auto
params_out
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"ParamOut"
);
size_t
n
=
params
.
size
();
PADDLE_ENFORCE_EQ
(
n
,
params_out
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of Output(ParamOut) must be equal to "
"Input(Param), but got the size of Output(ParamOut) "
"is %d, the size of Input(Param) is %d."
,
params_out
.
size
(),
n
));
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
params
[
i
],
params_out
[
i
],
platform
::
errors
::
InvalidArgument
(
"The size of Input(Param) and Output(ParamOut) "
"must be the same Tensors."
));
}
auto
grads
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
n
,
grads
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of Input(Grad) must be equal to Input(Param), but got "
"the size of Input(Grad) is %d, the size of Input(Param) is %d."
,
grads
.
size
(),
n
));
auto
velocitys
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Velocity"
);
PADDLE_ENFORCE_EQ
(
n
,
velocitys
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of Input(Velocity) must be equal to "
"Input(Param), but got the size of Input(Velocity) "
"is %d, the size of Input(Param) is %d."
,
velocitys
.
size
(),
n
));
auto
velocitys_out
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"VelocityOut"
);
PADDLE_ENFORCE_EQ
(
n
,
velocitys_out
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of Output(VelocityOut) must be "
"equal to Input(Param), but got the size of Output(VelocityOut) is "
"%d, the size of Input(Param) is %d."
,
velocitys_out
.
size
(),
n
));
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
velocitys
[
i
],
velocitys_out
[
i
],
platform
::
errors
::
InvalidArgument
(
"Input(Velocity) and Output(VelocityOut) must be "
"the same Tensors."
));
}
auto
mu
=
ctx
.
Attr
<
float
>
(
"mu"
);
auto
lrs
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"LearningRate"
);
if
(
lrs
.
size
()
!=
1
)
{
PADDLE_ENFORCE_EQ
(
n
,
lrs
.
size
(),
platform
::
errors
::
InvalidArgument
(
"If the size of Input(LearningRate) is not 1, the size of "
"Input(LearningRate) must be "
"equal to Input(Param), but got the size of Input(LearningRate) "
"is %d, the size of Input(Param) is %d."
,
lrs
.
size
(),
n
));
}
auto
use_nesterov
=
ctx
.
Attr
<
bool
>
(
"use_nesterov"
);
auto
regularization_methods
=
ctx
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"regularization_method"
);
auto
regularization_coeffs
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"regularization_coeff"
);
if
(
regularization_methods
.
size
()
!=
0
)
{
PADDLE_ENFORCE_EQ
(
n
,
regularization_methods
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of Attr(regularization_method) must be equal "
"to Input(Param), but got the size of "
"Attr(regularization_method) is %d, the size of Input(Param) is "
"%d."
,
regularization_methods
.
size
(),
n
));
PADDLE_ENFORCE_EQ
(
n
,
regularization_coeffs
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of Attr(regularization_coeff) must be equal "
"to Input(Param), but got the size of Attr(regularization_coeff) "
"is %d, the size of Input(Param) is %d."
,
regularization_coeffs
.
size
(),
n
));
}
VLOG
(
5
)
<<
"use_nesterov: "
<<
use_nesterov
<<
", regularization_methods.size(): "
<<
regularization_methods
.
size
()
<<
", regularization_coeffs.size(): "
<<
regularization_coeffs
.
size
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>();
Tensor
mu_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
MLUCnnlTensorDesc
mu_tensor_desc
(
mu_tensor
);
MLUCnnl
::
Fill
(
ctx
,
mu
,
mu_tensor_desc
.
get
(),
GetBasePtr
(
&
mu_tensor
));
for
(
size_t
idx
=
0
;
idx
<
n
;
++
idx
)
{
RegularizationType
regularization_flag
=
regularization_methods
.
size
()
>
0
&&
regularization_methods
[
idx
]
==
"l2_decay"
?
RegularizationType
::
kL2DECAY
:
RegularizationType
::
kNONE
;
T
regularization_coeff
=
static_cast
<
T
>
(
0.0
);
if
(
regularization_coeffs
.
size
()
!=
0
)
{
regularization_coeff
=
static_cast
<
T
>
(
regularization_coeffs
[
idx
]);
}
auto
learning_rate
=
lrs
.
size
()
>
1
?
lrs
[
idx
]
:
lrs
[
0
];
auto
param_out
=
params_out
[
idx
];
auto
velocity_out
=
velocitys_out
[
idx
];
auto
grad
=
grads
[
idx
];
Tensor
regularized_grad
;
MLUCnnlTensorDesc
param_desc
(
*
param_out
);
if
(
regularization_flag
==
RegularizationType
::
kL2DECAY
)
{
regularized_grad
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
param_out
->
dims
(),
dev_ctx
);
MLUCnnlOpTensorDesc
op_tensor_desc
(
CNNL_OP_TENSOR_ADD
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
op_tensor_desc
.
get
(),
param_desc
.
get
(),
GetBasePtr
(
param_out
),
param_desc
.
get
(),
GetBasePtr
(
grad
),
param_desc
.
get
(),
GetBasePtr
(
&
regularized_grad
),
ToCnnlDataType
<
T
>
(),
regularization_coeff
);
}
else
{
regularized_grad
=
*
grad
;
}
MLUCnnl
::
ApplyMomentum
(
ctx
,
param_desc
.
get
(),
GetBasePtr
(
&
regularized_grad
),
use_nesterov
,
GetBasePtr
(
learning_rate
),
GetBasePtr
(
&
mu_tensor
),
GetBasePtr
(
param_out
),
GetBasePtr
(
velocity_out
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
merged_momentum
,
ops
::
MLUMergedMomentumOpKernel
<
float
>
,
ops
::
MLUMergedMomentumOpKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_merged_momentum_op_mlu.py
0 → 100644
浏览文件 @
1f7b2516
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
'..'
)
import
unittest
import
paddle
import
numpy
as
np
from
paddle.fluid.layer_helper
import
LayerHelper
from
collections
import
OrderedDict
def
run_momentum_op
(
params
,
grads
,
velocitys
,
master_params
,
learning_rate
,
place
,
multi_precision
,
mu
=
0.9
,
rescale_grad
=
0.01
,
use_merged
=
False
):
assert
len
(
params
)
==
len
(
grads
)
assert
len
(
params
)
==
len
(
velocitys
)
if
multi_precision
:
assert
len
(
params
)
==
len
(
master_params
)
op_type
=
'merged_momentum'
if
use_merged
else
'momentum'
main
=
paddle
.
static
.
Program
()
startup
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main
,
startup
):
helper
=
LayerHelper
(
op_type
,
**
locals
())
attrs
=
{
'mu'
:
mu
,
'multi_precision'
:
multi_precision
,
'rescale_grad'
:
rescale_grad
,
}
param_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p
in
params
]
grad_vars
=
[
helper
.
create_variable
(
shape
=
g
.
shape
,
dtype
=
g
.
dtype
)
for
g
in
grads
]
velocity_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
)
for
v
in
velocitys
]
lr_var
=
helper
.
create_variable
(
persistable
=
True
,
shape
=
learning_rate
.
shape
,
dtype
=
learning_rate
.
dtype
)
feed_dict
=
OrderedDict
()
feed_dict
.
update
(
OrderedDict
([(
p_var
.
name
,
p_val
)
for
p_var
,
p_val
in
zip
(
param_vars
,
params
)]))
feed_dict
.
update
(
OrderedDict
([(
v_var
.
name
,
v_val
)
for
v_var
,
v_val
in
zip
(
velocity_vars
,
velocitys
)]))
fetch_list
=
list
(
feed_dict
.
keys
())
feed_dict
.
update
(
OrderedDict
([(
g_var
.
name
,
g_val
)
for
g_var
,
g_val
in
zip
(
grad_vars
,
grads
)]))
feed_dict
.
update
({
lr_var
.
name
:
learning_rate
})
if
multi_precision
:
master_param_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p
in
master_params
]
feed_dict
.
update
(
OrderedDict
([(
mp_var
.
name
,
mp_val
)
for
mp_var
,
mp_val
in
zip
(
master_param_vars
,
master_params
)]))
# CPUPlace does not use MasterParam
if
isinstance
(
place
,
paddle
.
CUDAPlace
):
fetch_list
=
fetch_list
+
[
mp_var
.
name
for
mp_var
in
master_param_vars
]
else
:
master_param_vars
=
None
if
not
use_merged
:
for
i
,
(
p
,
g
,
v
)
in
enumerate
(
zip
(
param_vars
,
grad_vars
,
velocity_vars
)):
inputs
=
{
'Param'
:
p
,
'Grad'
:
g
,
'Velocity'
:
v
,
'LearningRate'
:
lr_var
,
}
outputs
=
{
'ParamOut'
:
p
,
'VelocityOut'
:
v
}
if
multi_precision
:
inputs
[
'MasterParam'
]
=
master_param_vars
[
i
]
outputs
[
'MasterParamOut'
]
=
master_param_vars
[
i
]
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
else
:
inputs
=
{
'Param'
:
param_vars
,
'Grad'
:
grad_vars
,
'Velocity'
:
velocity_vars
,
'LearningRate'
:
lr_var
,
}
outputs
=
{
'ParamOut'
:
param_vars
,
'VelocityOut'
:
velocity_vars
}
if
multi_precision
:
inputs
[
'MasterParam'
]
=
master_param_vars
outputs
[
'MasterParamOut'
]
=
master_param_vars
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
exe
=
paddle
.
static
.
Executor
(
place
)
with
paddle
.
static
.
scope_guard
(
paddle
.
static
.
Scope
()):
exe
.
run
(
startup
)
return
exe
.
run
(
main
,
feed
=
feed_dict
,
fetch_list
=
fetch_list
)
def
run_momentum_op2
(
params
,
grads
,
velocitys
,
master_params
,
learning_rate
,
place
,
multi_precision
,
mu
=
0.9
,
rescale_grad
=
0.01
,
use_merged
=
False
,
use_nesterov
=
True
):
assert
len
(
params
)
==
len
(
grads
)
assert
len
(
params
)
==
len
(
velocitys
)
if
multi_precision
:
assert
len
(
params
)
==
len
(
master_params
)
op_type
=
'merged_momentum'
if
use_merged
else
'momentum'
main
=
paddle
.
static
.
Program
()
startup
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main
,
startup
):
helper
=
LayerHelper
(
op_type
,
**
locals
())
param_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p
in
params
]
grad_vars
=
[
helper
.
create_variable
(
shape
=
g
.
shape
,
dtype
=
g
.
dtype
)
for
g
in
grads
]
velocity_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
)
for
v
in
velocitys
]
lr_var
=
helper
.
create_variable
(
persistable
=
True
,
shape
=
learning_rate
.
shape
,
dtype
=
learning_rate
.
dtype
)
feed_dict
=
OrderedDict
()
feed_dict
.
update
(
OrderedDict
([(
p_var
.
name
,
p_val
)
for
p_var
,
p_val
in
zip
(
param_vars
,
params
)]))
feed_dict
.
update
(
OrderedDict
([(
v_var
.
name
,
v_val
)
for
v_var
,
v_val
in
zip
(
velocity_vars
,
velocitys
)]))
fetch_list
=
list
(
feed_dict
.
keys
())
feed_dict
.
update
(
OrderedDict
([(
g_var
.
name
,
g_val
)
for
g_var
,
g_val
in
zip
(
grad_vars
,
grads
)]))
feed_dict
.
update
({
lr_var
.
name
:
learning_rate
})
if
multi_precision
:
master_param_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p
in
master_params
]
feed_dict
.
update
(
OrderedDict
([(
mp_var
.
name
,
mp_val
)
for
mp_var
,
mp_val
in
zip
(
master_param_vars
,
master_params
)]))
# CPUPlace does not use MasterParam
if
isinstance
(
place
,
paddle
.
CUDAPlace
):
fetch_list
=
fetch_list
+
[
mp_var
.
name
for
mp_var
in
master_param_vars
]
else
:
master_param_vars
=
None
if
not
use_merged
:
for
i
,
(
p
,
g
,
v
)
in
enumerate
(
zip
(
param_vars
,
grad_vars
,
velocity_vars
)):
inputs
=
{
'Param'
:
p
,
'Grad'
:
g
,
'Velocity'
:
v
,
'LearningRate'
:
lr_var
,
}
outputs
=
{
'ParamOut'
:
p
,
'VelocityOut'
:
v
}
if
multi_precision
:
inputs
[
'MasterParam'
]
=
master_param_vars
[
i
]
outputs
[
'MasterParamOut'
]
=
master_param_vars
[
i
]
attrs
=
{
'mu'
:
mu
,
'multi_precision'
:
multi_precision
,
'rescale_grad'
:
rescale_grad
,
'use_nesterov'
:
use_nesterov
,
'regularization_method'
:
'l2_decay'
,
'regularization_coeff'
:
2.0
,
}
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
else
:
inputs
=
{
'Param'
:
param_vars
,
'Grad'
:
grad_vars
,
'Velocity'
:
velocity_vars
,
'LearningRate'
:
lr_var
,
}
outputs
=
{
'ParamOut'
:
param_vars
,
'VelocityOut'
:
velocity_vars
}
if
multi_precision
:
inputs
[
'MasterParam'
]
=
master_param_vars
outputs
[
'MasterParamOut'
]
=
master_param_vars
attrs
=
{
'mu'
:
mu
,
'multi_precision'
:
multi_precision
,
'rescale_grad'
:
rescale_grad
,
'use_nesterov'
:
use_nesterov
,
'regularization_method'
:
[
'l2_decay'
for
i
in
range
(
len
(
param_vars
))],
'regularization_coeff'
:
[
2.0
for
i
in
range
(
len
(
param_vars
))],
}
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
exe
=
paddle
.
static
.
Executor
(
place
)
with
paddle
.
static
.
scope_guard
(
paddle
.
static
.
Scope
()):
exe
.
run
(
startup
)
return
exe
.
run
(
main
,
feed
=
feed_dict
,
fetch_list
=
fetch_list
)
class
TestMergedMomentum
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
shapes
=
[[
3
,
4
],
[
2
,
7
],
[
5
,
6
],
[
7
,
8
]]
self
.
seed
=
10
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
gen_rand_data
(
self
,
shapes
,
dtype
):
return
[
np
.
random
.
random
(
s
).
astype
(
dtype
)
for
s
in
shapes
]
def
prepare_data
(
self
,
shapes
,
multi_precision
,
seed
,
place
):
np
.
random
.
seed
(
seed
)
mp_dtype
=
np
.
float32
dtype
=
np
.
float32
params
=
self
.
gen_rand_data
(
shapes
,
dtype
)
grads
=
self
.
gen_rand_data
(
shapes
,
dtype
)
velocitys
=
self
.
gen_rand_data
(
shapes
,
mp_dtype
)
learning_rate
=
self
.
gen_rand_data
([[
1
]],
mp_dtype
)[
0
]
if
multi_precision
:
master_params
=
[
p
.
astype
(
mp_dtype
)
for
p
in
params
]
else
:
master_params
=
None
return
params
,
grads
,
velocitys
,
master_params
,
learning_rate
def
check_with_place
(
self
,
place
,
multi_precision
):
params
,
grads
,
velocitys
,
master_params
,
learning_rate
=
self
.
prepare_data
(
self
.
shapes
,
multi_precision
,
self
.
seed
,
place
)
def
run_op
(
use_merged
):
# MLU Momentum Op does not support rescale_grad
rescale_grad
=
1.0
return
run_momentum_op
(
params
,
grads
,
velocitys
,
master_params
,
learning_rate
,
place
,
multi_precision
,
rescale_grad
=
rescale_grad
,
use_merged
=
use_merged
)
outs1
=
run_op
(
True
)
outs2
=
run_op
(
False
)
self
.
assertEqual
(
len
(
outs1
),
len
(
outs2
))
for
i
,
(
out1
,
out2
)
in
enumerate
(
zip
(
outs1
,
outs2
)):
self
.
assertTrue
(
np
.
allclose
(
out1
,
out2
,
atol
=
1e-7
))
def
test_main
(
self
):
self
.
check_with_place
(
self
.
place
,
multi_precision
=
False
)
class
TestMergedMomentum2
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
shapes
=
[[
3
,
4
],
[
2
,
7
],
[
5
,
6
],
[
7
,
8
]]
self
.
seed
=
10
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
gen_rand_data
(
self
,
shapes
,
dtype
):
return
[
np
.
random
.
random
(
s
).
astype
(
dtype
)
for
s
in
shapes
]
def
prepare_data
(
self
,
shapes
,
multi_precision
,
seed
,
place
):
np
.
random
.
seed
(
seed
)
mp_dtype
=
np
.
float32
dtype
=
np
.
float32
# np.float16
params
=
self
.
gen_rand_data
(
shapes
,
dtype
)
grads
=
self
.
gen_rand_data
(
shapes
,
dtype
)
velocitys
=
self
.
gen_rand_data
(
shapes
,
mp_dtype
)
learning_rate
=
self
.
gen_rand_data
([[
1
]],
mp_dtype
)[
0
]
if
multi_precision
:
master_params
=
[
p
.
astype
(
mp_dtype
)
for
p
in
params
]
else
:
master_params
=
None
return
params
,
grads
,
velocitys
,
master_params
,
learning_rate
def
check_with_place
(
self
,
place
,
multi_precision
):
params
,
grads
,
velocitys
,
master_params
,
learning_rate
=
self
.
prepare_data
(
self
.
shapes
,
multi_precision
,
self
.
seed
,
place
)
def
run_op
(
use_nesterov
,
use_merged
):
# MLU Momentum Op does not support rescale_grad
rescale_grad
=
1.0
return
run_momentum_op2
(
params
,
grads
,
velocitys
,
master_params
,
learning_rate
,
place
,
multi_precision
,
rescale_grad
=
rescale_grad
,
use_merged
=
use_merged
,
use_nesterov
=
use_nesterov
)
outs1
=
run_op
(
use_nesterov
=
True
,
use_merged
=
True
)
outs2
=
run_op
(
use_nesterov
=
True
,
use_merged
=
False
)
self
.
assertEqual
(
len
(
outs1
),
len
(
outs2
))
for
i
,
(
out1
,
out2
)
in
enumerate
(
zip
(
outs1
,
outs2
)):
self
.
assertTrue
(
np
.
allclose
(
out1
,
out2
,
atol
=
1e-7
))
outs3
=
run_op
(
use_nesterov
=
False
,
use_merged
=
True
)
outs4
=
run_op
(
use_nesterov
=
False
,
use_merged
=
False
)
self
.
assertEqual
(
len
(
outs3
),
len
(
outs4
))
for
j
,
(
out3
,
out4
)
in
enumerate
(
zip
(
outs3
,
outs4
)):
self
.
assertTrue
(
np
.
allclose
(
out3
,
out4
,
atol
=
1e-7
))
def
test_main
(
self
):
self
.
check_with_place
(
self
.
place
,
multi_precision
=
False
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录