Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1f45c06e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1f45c06e
编写于
10月 15, 2020
作者:
Q
Qinghe JING
提交者:
GitHub
10月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add reduce xpu op test=develop;test=kunlun (#27960)
上级
ef2b12f1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
592 addition
and
0 deletion
+592
-0
paddle/fluid/operators/reduce_ops/reduce_mean_op_xpu.cc
paddle/fluid/operators/reduce_ops/reduce_mean_op_xpu.cc
+57
-0
paddle/fluid/operators/reduce_ops/reduce_sum_op_xpu.cc
paddle/fluid/operators/reduce_ops/reduce_sum_op_xpu.cc
+123
-0
python/paddle/fluid/tests/unittests/xpu/test_reduce_mean_op_xpu.py
...ddle/fluid/tests/unittests/xpu/test_reduce_mean_op_xpu.py
+206
-0
python/paddle/fluid/tests/unittests/xpu/test_reduce_sum_op_xpu.py
...addle/fluid/tests/unittests/xpu/test_reduce_sum_op_xpu.py
+206
-0
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_mean_op_xpu.cc
0 → 100644
浏览文件 @
1f45c06e
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/reduce_ops/reduce_mean_op.h"
#include <memory>
#include <string>
#include <vector>
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
ReduceMeanXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
Unavailable
(
"This kernel only runs on XPU."
));
// bool reduce_all = context.Attr<bool>("reduce_all");
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
ndim
=
input
->
dims
().
size
();
std
::
vector
<
int
>
idims
;
for
(
int
i
=
0
;
i
<
input
->
dims
().
size
();
i
++
)
{
idims
.
push_back
(
input
->
dims
()[
i
]);
}
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
int
rdim
=
dims
.
size
();
int
r
=
xpu
::
reduce
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
output
->
data
<
T
>
(),
idims
.
data
(),
ndim
,
dims
.
data
(),
rdim
,
xpu
::
REDUCE_MEAN
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU kernel error!"
));
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_XPU_KERNEL
(
reduce_mean
,
ops
::
ReduceMeanXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/operators/reduce_ops/reduce_sum_op_xpu.cc
0 → 100644
浏览文件 @
1f45c06e
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include <memory>
#include <string>
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
ReduceSumXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
Unavailable
(
"This kernel only runs on XPU."
));
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
if
(
reduce_all
)
{
int
input_len
=
input
->
numel
();
int
r
=
xpu
::
sum
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
output
->
data
<
T
>
(),
input_len
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU kernel error!"
));
}
else
{
int
ndim
=
input
->
dims
().
size
();
std
::
vector
<
int
>
idims
;
for
(
int
i
=
0
;
i
<
input
->
dims
().
size
();
i
++
)
{
idims
.
push_back
(
input
->
dims
()[
i
]);
}
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
int
rdim
=
dims
.
size
();
int
r
=
xpu
::
reduce
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
output
->
data
<
T
>
(),
idims
.
data
(),
ndim
,
dims
.
data
(),
rdim
,
xpu
::
REDUCE_SUM
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU kernel error!"
));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ReduceSumGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
*
input0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input2
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
auto
*
input2_d
=
input2
->
data
<
T
>
();
auto
*
output_d
=
output
->
data
<
T
>
();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
0
;
std
::
vector
<
int
>
idims
;
int
reduce_dim
=
0
;
if
(
reduce_all
)
{
idims
.
push_back
(
input0
->
numel
());
idims
.
push_back
(
1
);
idims
.
push_back
(
1
);
r
=
xpu
::
reduce_grad
(
dev_ctx
.
x_context
(),
input2_d
,
output_d
,
idims
.
data
(),
idims
.
size
(),
&
reduce_dim
,
1
,
xpu
::
REDUCE_SUM
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU kernel error!"
));
}
else
if
(
dims
.
size
()
==
1
)
{
// handle reduce by one dimension
int
reduce_dim_index
=
dims
[
0
];
if
(
reduce_dim_index
<
0
)
{
reduce_dim_index
+=
input0
->
dims
().
size
();
}
auto
&
input_dim
=
input0
->
dims
();
int
before_dim
=
1
;
for
(
int
i
=
0
;
i
<
reduce_dim_index
;
++
i
)
{
before_dim
*=
input_dim
[
i
];
}
int
reduce_dim
=
input_dim
[
reduce_dim_index
];
int
after_dim
=
1
;
for
(
int
i
=
reduce_dim_index
+
1
;
i
<
input_dim
.
size
();
++
i
)
{
after_dim
*=
input_dim
[
i
];
}
idims
.
push_back
(
before_dim
);
idims
.
push_back
(
input_dim
[
reduce_dim_index
]);
idims
.
push_back
(
after_dim
);
reduce_dim
=
1
;
r
=
xpu
::
reduce_grad
(
dev_ctx
.
x_context
(),
input2_d
,
output_d
,
idims
.
data
(),
idims
.
size
(),
&
reduce_dim
,
1
,
xpu
::
REDUCE_SUM
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU kernel error!"
));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"unsupport reduce sum grad"
));
}
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_XPU_KERNEL
(
reduce_sum
,
ops
::
ReduceSumXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
reduce_sum_grad
,
ops
::
ReduceSumGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
python/paddle/fluid/tests/unittests/xpu/test_reduce_mean_op_xpu.py
0 → 100644
浏览文件 @
1f45c06e
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
class
TestMeanOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
check_grad_
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestMeanOp5D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
2
,
5
,
6
,
10
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestMeanOp6D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
1
,
2
,
5
,
6
,
10
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestMeanOp8D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
3
,
1
,
2
,
1
,
4
,
3
,
10
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'dim'
:
(
0
,
3
),
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
(
0
,
3
))}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
Test1DReduce
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
120
).
astype
(
"float64"
)}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
Test2DReduce0
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
0
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
10
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
0
)}
class
Test2DReduce1
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
1
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
10
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce0
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
1
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce1
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
2
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce2
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
-
2
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce3
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
attrs
=
{
'dim'
:
[
1
,
2
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
TestKeepDimReduce
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'dim'
:
[
1
],
'keep_dim'
:
True
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]),
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
class
TestKeepDim8DReduce
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
5
,
3
,
2
,
2
,
3
,
4
,
2
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'dim'
:
(
3
,
4
,
5
),
'keep_dim'
:
True
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]),
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
class
TestReduceAll
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
2
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'reduce_all'
:
True
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
()}
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_reduce_sum_op_xpu.py
0 → 100644
浏览文件 @
1f45c06e
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
class
TestSumOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
check_grad_
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSumOp5D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
2
,
5
,
6
,
10
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSumOp6D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
1
,
2
,
5
,
6
,
10
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSumOp8D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
3
,
1
,
2
,
1
,
4
,
3
,
10
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'dim'
:
(
0
,
3
),
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
(
0
,
3
))}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
Test1DReduce
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
120
).
astype
(
"float64"
)}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
Test2DReduce0
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
0
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
10
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
class
Test2DReduce1
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
1
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
10
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce0
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
1
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce1
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
2
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce2
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
-
2
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce3
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
1
,
2
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
TestKeepDimReduce
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'dim'
:
[
1
],
'keep_dim'
:
True
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]),
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
class
TestKeepDim8DReduce
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
5
,
3
,
2
,
2
,
3
,
4
,
2
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'dim'
:
(
3
,
4
,
5
),
'keep_dim'
:
True
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]),
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
class
TestReduceAll
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
2
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'reduce_all'
:
True
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
()}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录