Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1e956001
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1e956001
编写于
3月 16, 2021
作者:
L
Leo Chen
提交者:
GitHub
3月 16, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add npu kernel for adam (#31644)
* add npu kernel for adam * refine code * disable test * modify atol
上级
795b0f92
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
309 addition
and
0 deletion
+309
-0
paddle/fluid/operators/optimizers/adam_op_npu.cc
paddle/fluid/operators/optimizers/adam_op_npu.cc
+161
-0
python/paddle/fluid/tests/unittests/npu/test_adam_op_npu.py
python/paddle/fluid/tests/unittests/npu/test_adam_op_npu.py
+148
-0
未找到文件。
paddle/fluid/operators/optimizers/adam_op_npu.cc
0 → 100644
浏览文件 @
1e956001
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/optimizers/adam_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
AdamNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
*
param
=
ctx
.
Input
<
LoDTensor
>
(
"Param"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Grad(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Grad"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
auto
*
grad
=
ctx
.
Input
<
LoDTensor
>
(
"Grad"
);
auto
*
mom1
=
ctx
.
Input
<
LoDTensor
>
(
"Moment1"
);
auto
*
mom2
=
ctx
.
Input
<
LoDTensor
>
(
"Moment2"
);
auto
*
lr
=
ctx
.
Input
<
LoDTensor
>
(
"LearningRate"
);
auto
*
beta1_pow
=
ctx
.
Input
<
LoDTensor
>
(
"Beta1Pow"
);
auto
*
beta2_pow
=
ctx
.
Input
<
LoDTensor
>
(
"Beta2Pow"
);
auto
*
param_out
=
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
);
auto
*
mom1_out
=
ctx
.
Output
<
LoDTensor
>
(
"Moment1Out"
);
auto
*
mom2_out
=
ctx
.
Output
<
LoDTensor
>
(
"Moment2Out"
);
auto
*
beta1_pow_out
=
ctx
.
Output
<
LoDTensor
>
(
"Beta1PowOut"
);
auto
*
beta2_pow_out
=
ctx
.
Output
<
LoDTensor
>
(
"Beta2PowOut"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mom1_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mom2_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
beta1_pow_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
beta2_pow_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
beta1
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
if
(
ctx
.
HasInput
(
"Beta1Tensor"
))
{
auto
*
beta1_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta1Tensor"
);
PADDLE_ENFORCE_EQ
(
beta1_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(Beta1Tensor) size must be 1, but get %d"
,
beta1_tensor
->
numel
()));
beta1
=
static_cast
<
T
>
(
GetAttrFromTensor
(
beta1_tensor
));
}
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
if
(
ctx
.
HasInput
(
"Beta2Tensor"
))
{
auto
*
beta2_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta2Tensor"
);
PADDLE_ENFORCE_EQ
(
beta2_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(Beta2Tensor) size must be 1, but get %d"
,
beta2_tensor
->
numel
()));
beta2
=
static_cast
<
T
>
(
GetAttrFromTensor
(
beta2_tensor
));
}
VLOG
(
3
)
<<
"beta1_pow.numel() : "
<<
beta1_pow
->
numel
()
<<
"beta2_pow.numel() : "
<<
beta2_pow
->
numel
();
VLOG
(
3
)
<<
"param.numel(): "
<<
param
->
numel
();
PADDLE_ENFORCE_EQ
(
beta1_pow_out
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"beta1 pow output size should be 1, but received "
"value is:%d."
,
beta1_pow_out
->
numel
()));
PADDLE_ENFORCE_EQ
(
beta2_pow_out
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"beta2 pow output size should be 1, but received "
"value is:%d."
,
beta2_pow_out
->
numel
()));
// reshape
Tensor
beta1_tensor
(
framework
::
proto
::
VarType
::
FP32
);
beta1_tensor
.
mutable_data
<
float
>
({
1
},
ctx
.
GetPlace
());
TensorFromVector
(
std
::
vector
<
T
>
{
beta1
},
ctx
.
device_context
(),
&
beta1_tensor
);
Tensor
beta2_tensor
(
framework
::
proto
::
VarType
::
FP32
);
beta2_tensor
.
mutable_data
<
float
>
({
1
},
ctx
.
GetPlace
());
TensorFromVector
(
std
::
vector
<
T
>
{
beta2
},
ctx
.
device_context
(),
&
beta2_tensor
);
Tensor
epsilon_tensor
(
framework
::
proto
::
VarType
::
FP32
);
epsilon_tensor
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
TensorFromVector
(
std
::
vector
<
T
>
{
epsilon
},
ctx
.
device_context
(),
&
epsilon_tensor
);
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
auto
runner
=
NpuOpRunner
(
"ApplyAdamD"
,
{
*
param
,
*
mom1
,
*
mom2
,
*
beta1_pow
,
*
beta2_pow
,
*
lr
,
beta1_tensor
,
beta2_tensor
,
epsilon_tensor
,
*
grad
,
},
{
*
param_out
,
*
mom1_out
,
*
mom2_out
,
},
{});
runner
.
Run
(
stream
);
// NOTE(zhiqiu): ApplyAdamD updates params inplace, so
// if param and param_out is not same, we need to do copy.
if
(
param_out
->
data
<
T
>
()
!=
param
->
data
<
T
>
())
{
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>().
Wait
();
framework
::
TensorCopySync
(
*
param
,
ctx
.
GetPlace
(),
param_out
);
}
if
(
mom1_out
->
data
<
T
>
()
!=
mom1
->
data
<
T
>
())
{
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>().
Wait
();
framework
::
TensorCopySync
(
*
mom1
,
ctx
.
GetPlace
(),
mom1_out
);
}
if
(
mom2_out
->
data
<
T
>
()
!=
mom2
->
data
<
T
>
())
{
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>().
Wait
();
framework
::
TensorCopySync
(
*
mom2
,
ctx
.
GetPlace
(),
mom2_out
);
}
auto
runner_m1
=
NpuOpRunner
(
"Mul"
,
{
*
beta1_pow
,
beta1_tensor
},
{
*
beta1_pow_out
},
{});
runner_m1
.
Run
(
stream
);
auto
runner_m2
=
NpuOpRunner
(
"Mul"
,
{
*
beta2_pow
,
beta2_tensor
},
{
*
beta2_pow_out
},
{});
runner_m2
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
adam
,
ops
::
AdamNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
AdamNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_adam_op_npu.py
0 → 100644
浏览文件 @
1e956001
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
test_adam_op
import
adam_step
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSGD
(
OpTest
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
"adam"
param
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
grad
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
moment1
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
# The second moment is positive
moment2
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
learning_rate
=
0.004
beta1
=
0.78
beta2
=
0.836
epsilon
=
1e-4
beta1_pow
=
beta1
**
10
beta2_pow
=
beta2
**
10
self
.
inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'epsilon'
:
epsilon
,
'beta1'
:
beta1
,
'beta2'
:
beta2
}
param_out
,
moment1_out
,
\
moment2_out
=
adam_step
(
self
.
inputs
,
self
.
attrs
)
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'ParamOut'
:
param_out
,
'Beta1PowOut'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
)
*
beta1
,
'Beta2PowOut'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
)
*
beta2
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
,
check_dygraph
=
False
)
'''
# TODO(zhiqiu): The following test may let 0-3 card down.
# we need to analyze it and open it.
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.pow(sum, 2.0)
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
adam = fluid.optimizer.Adam(learning_rate=0.01)
adam.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))
'''
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录