Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1dfa2d49
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1dfa2d49
编写于
6月 15, 2022
作者:
F
fwenguang
提交者:
GitHub
6月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add bce kernel for mlu (#43467)
上级
669d8689
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
417 addition
and
0 deletion
+417
-0
paddle/fluid/operators/bce_loss_op_mlu.cc
paddle/fluid/operators/bce_loss_op_mlu.cc
+73
-0
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+46
-0
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+15
-0
python/paddle/fluid/tests/unittests/mlu/test_bce_loss_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_bce_loss_mlu.py
+283
-0
未找到文件。
paddle/fluid/operators/bce_loss_op_mlu.cc
0 → 100644
浏览文件 @
1dfa2d49
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
BCELossMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
x_desc
(
*
x
);
MLUCnnlTensorDesc
label_desc
(
*
labels
);
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnl
::
BceLoss
(
ctx
,
CNNL_BCE_LOSS_NONE
,
x_desc
.
get
(),
GetBasePtr
(
x
),
label_desc
.
get
(),
GetBasePtr
(
labels
),
nullptr
,
nullptr
,
out_desc
.
get
(),
GetBasePtr
(
out
));
}
};
template
<
typename
T
>
class
BCELossGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
x_desc
(
*
x
);
MLUCnnlTensorDesc
label_desc
(
*
labels
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
MLUCnnl
::
BceLossBackward
(
ctx
,
CNNL_BCE_LOSS_NONE
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
x_desc
.
get
(),
GetBasePtr
(
x
),
label_desc
.
get
(),
GetBasePtr
(
labels
),
nullptr
,
nullptr
,
x_desc
.
get
(),
GetBasePtr
(
dx
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
bce_loss
,
ops
::
BCELossMLUKernel
<
float
>
,
ops
::
BCELossMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
bce_loss_grad
,
ops
::
BCELossGradMLUKernel
<
float
>
,
ops
::
BCELossGradMLUKernel
<
plat
::
float16
>
);
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
1dfa2d49
...
...
@@ -2799,6 +2799,52 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
cnnlReciprocal
(
handle
,
input_desc
,
input
,
output_desc
,
output
));
}
/* static */
void
MLUCnnl
::
BceLoss
(
const
ExecutionContext
&
ctx
,
const
cnnlBceLossReduction_t
reduction
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
target_desc
,
const
void
*
target
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
size_t
workspace_size
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlGetBceLossWorkspaceSize
(
handle
,
input_desc
,
weight_desc
,
&
workspace_size
));
auto
&
dev_ctx
=
GetDevCtxFromCTX
(
ctx
);
Tensor
workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
MLUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
workspace_size
)},
dev_ctx
);
void
*
workspace_ptr
=
workspace
.
mutable_data
(
ctx
.
GetPlace
());
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlBceLoss
(
handle
,
input_desc
,
input
,
target_desc
,
target
,
weight_desc
,
weight
,
reduction
,
workspace_ptr
,
workspace_size
,
output_desc
,
output
));
}
/* static */
void
MLUCnnl
::
BceLossBackward
(
const
ExecutionContext
&
ctx
,
const
cnnlBceLossReduction_t
reduction
,
const
cnnlTensorDescriptor_t
grad_desc
,
const
void
*
grad
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
target_desc
,
const
void
*
target
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
size_t
workspace_size
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlGetBceLossBackwardWorkspaceSize
(
handle
,
target_desc
,
weight_desc
,
&
workspace_size
));
auto
&
dev_ctx
=
GetDevCtxFromCTX
(
ctx
);
Tensor
workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
MLUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
workspace_size
)},
dev_ctx
);
void
*
workspace_ptr
=
workspace
.
mutable_data
(
ctx
.
GetPlace
());
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlBceLossBackward
(
handle
,
grad_desc
,
grad
,
input_desc
,
input
,
target_desc
,
target
,
weight_desc
,
weight
,
reduction
,
workspace_ptr
,
workspace_size
,
output_desc
,
output
));
}
/* static */
void
MLUCnnl
::
EmbeddingForward
(
const
ExecutionContext
&
ctx
,
const
int
padding_idx
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
...
...
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
1dfa2d49
...
...
@@ -1268,6 +1268,21 @@ class MLUCnnl {
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
BceLoss
(
const
ExecutionContext
&
ctx
,
const
cnnlBceLossReduction_t
reduction
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
target_desc
,
const
void
*
target
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
BceLossBackward
(
const
ExecutionContext
&
ctx
,
const
cnnlBceLossReduction_t
reduction
,
const
cnnlTensorDescriptor_t
grad_desc
,
const
void
*
grad
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
target_desc
,
const
void
*
target
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
EmbeddingForward
(
const
ExecutionContext
&
ctx
,
const
int
padding_idx
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
...
...
python/paddle/fluid/tests/unittests/mlu/test_bce_loss_mlu.py
0 → 100644
浏览文件 @
1dfa2d49
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
paddle
.
enable_static
()
def
test_static_layer
(
place
,
input_np
,
label_np
,
reduction
=
'mean'
,
weight_np
=
None
):
prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
prog
,
startup_prog
):
input
=
paddle
.
fluid
.
data
(
name
=
'input'
,
shape
=
input_np
.
shape
,
dtype
=
'float32'
)
label
=
paddle
.
fluid
.
data
(
name
=
'label'
,
shape
=
label_np
.
shape
,
dtype
=
'float32'
)
if
weight_np
is
not
None
:
weight
=
paddle
.
fluid
.
data
(
name
=
'weight'
,
shape
=
weight_np
.
shape
,
dtype
=
'float32'
)
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
weight
=
weight
,
reduction
=
reduction
)
else
:
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
reduction
=
reduction
)
res
=
bce_loss
(
input
,
label
)
exe
=
paddle
.
static
.
Executor
(
place
)
static_result
=
exe
.
run
(
prog
,
feed
=
{
"input"
:
input_np
,
"label"
:
label_np
}
if
weight_np
is
None
else
{
"input"
:
input_np
,
"label"
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
res
])
return
static_result
def
test_static_functional
(
place
,
input_np
,
label_np
,
reduction
=
'mean'
,
weight_np
=
None
):
prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
prog
,
startup_prog
):
input
=
paddle
.
fluid
.
data
(
name
=
'input'
,
shape
=
input_np
.
shape
,
dtype
=
'float32'
)
label
=
paddle
.
fluid
.
data
(
name
=
'label'
,
shape
=
label_np
.
shape
,
dtype
=
'float32'
)
if
weight_np
is
not
None
:
weight
=
paddle
.
fluid
.
data
(
name
=
'weight'
,
shape
=
weight_np
.
shape
,
dtype
=
'float32'
)
res
=
paddle
.
nn
.
functional
.
binary_cross_entropy
(
input
,
label
,
weight
=
weight
,
reduction
=
reduction
)
else
:
res
=
paddle
.
nn
.
functional
.
binary_cross_entropy
(
input
,
label
,
reduction
=
reduction
)
exe
=
paddle
.
static
.
Executor
(
place
)
static_result
=
exe
.
run
(
prog
,
feed
=
{
"input"
:
input_np
,
"label"
:
label_np
}
if
weight_np
is
None
else
{
"input"
:
input_np
,
"label"
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
res
])
return
static_result
def
test_dygraph_layer
(
place
,
input_np
,
label_np
,
reduction
=
'mean'
,
weight_np
=
None
):
paddle
.
disable_static
()
if
weight_np
is
not
None
:
weight
=
paddle
.
to_tensor
(
weight_np
)
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
weight
=
weight
,
reduction
=
reduction
)
else
:
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
reduction
=
reduction
)
dy_res
=
bce_loss
(
paddle
.
to_tensor
(
input_np
),
paddle
.
to_tensor
(
label_np
))
dy_result
=
dy_res
.
numpy
()
paddle
.
enable_static
()
return
dy_result
def
test_dygraph_functional
(
place
,
input_np
,
label_np
,
reduction
=
'mean'
,
weight_np
=
None
):
paddle
.
disable_static
()
input
=
paddle
.
to_tensor
(
input_np
)
label
=
paddle
.
to_tensor
(
label_np
)
if
weight_np
is
not
None
:
weight
=
paddle
.
to_tensor
(
weight_np
)
dy_res
=
paddle
.
nn
.
functional
.
binary_cross_entropy
(
input
,
label
,
weight
=
weight
,
reduction
=
reduction
)
else
:
dy_res
=
paddle
.
nn
.
functional
.
binary_cross_entropy
(
input
,
label
,
reduction
=
reduction
)
dy_result
=
dy_res
.
numpy
()
paddle
.
enable_static
()
return
dy_result
def
calc_bceloss
(
input_np
,
label_np
,
reduction
=
'mean'
,
weight_np
=
None
):
if
weight_np
is
None
:
expected
=
-
1
*
(
label_np
*
np
.
log
(
input_np
)
+
(
1.
-
label_np
)
*
np
.
log
(
1.
-
input_np
))
else
:
expected
=
-
1
*
weight_np
*
(
label_np
*
np
.
log
(
input_np
)
+
(
1.
-
label_np
)
*
np
.
log
(
1.
-
input_np
))
if
reduction
==
'mean'
:
expected
=
np
.
mean
(
expected
)
elif
reduction
==
'sum'
:
expected
=
np
.
sum
(
expected
)
else
:
expected
=
expected
return
expected
class
TestBCELoss
(
unittest
.
TestCase
):
def
test_BCELoss
(
self
):
input_np
=
np
.
random
.
uniform
(
0.1
,
0.8
,
size
=
(
20
,
30
)).
astype
(
np
.
float32
)
label_np
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
20
,
30
)).
astype
(
np
.
float32
)
places
=
[
fluid
.
MLUPlace
(
0
)]
reductions
=
[
'sum'
,
'mean'
,
'none'
]
for
place
in
places
:
for
reduction
in
reductions
:
static_result
=
test_static_layer
(
place
,
input_np
,
label_np
,
reduction
)
dy_result
=
test_dygraph_layer
(
place
,
input_np
,
label_np
,
reduction
)
expected
=
calc_bceloss
(
input_np
,
label_np
,
reduction
)
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
static_functional
=
test_static_functional
(
place
,
input_np
,
label_np
,
reduction
)
dy_functional
=
test_dygraph_functional
(
place
,
input_np
,
label_np
,
reduction
)
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
dy_functional
))
self
.
assertTrue
(
np
.
allclose
(
dy_functional
,
expected
))
def
test_BCELoss_weight
(
self
):
input_np
=
np
.
random
.
uniform
(
0.1
,
0.8
,
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float32
)
label_np
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
2
,
3
,
4
,
10
)).
astype
(
np
.
float32
)
weight_np
=
np
.
random
.
random
(
size
=
(
3
,
4
,
10
)).
astype
(
np
.
float32
)
place
=
fluid
.
MLUPlace
(
0
)
for
reduction
in
[
'sum'
,
'mean'
,
'none'
]:
static_result
=
test_static_layer
(
place
,
input_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
dy_result
=
test_dygraph_layer
(
place
,
input_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
expected
=
calc_bceloss
(
input_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
self
.
assertTrue
(
np
.
allclose
(
static_result
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_result
,
dy_result
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
,
expected
))
static_functional
=
test_static_functional
(
place
,
input_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
dy_functional
=
test_dygraph_functional
(
place
,
input_np
,
label_np
,
reduction
,
weight_np
=
weight_np
)
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
static_functional
,
dy_functional
))
self
.
assertTrue
(
np
.
allclose
(
dy_functional
,
expected
))
def
test_BCELoss_error
(
self
):
paddle
.
disable_static
()
self
.
assertRaises
(
ValueError
,
paddle
.
nn
.
loss
.
BCELoss
,
reduction
=
"unsupport reduction"
)
input
=
paddle
.
to_tensor
([[
0.1
,
0.3
]],
dtype
=
'float32'
)
label
=
paddle
.
to_tensor
([[
0.0
,
1.0
]],
dtype
=
'float32'
)
self
.
assertRaises
(
ValueError
,
paddle
.
nn
.
functional
.
binary_cross_entropy
,
input
=
input
,
label
=
label
,
reduction
=
"unsupport reduction"
)
paddle
.
enable_static
()
def
bce_loss
(
input
,
label
):
return
-
1
*
(
label
*
np
.
log
(
input
)
+
(
1.
-
label
)
*
np
.
log
(
1.
-
input
))
class
TestBceLossOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_test_case
()
self
.
op_type
=
"bce_loss"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
input_np
=
np
.
random
.
uniform
(
0.1
,
0.8
,
self
.
shape
).
astype
(
"float32"
)
label_np
=
np
.
random
.
randint
(
0
,
2
,
self
.
shape
).
astype
(
"float32"
)
output_np
=
bce_loss
(
input_np
,
label_np
)
self
.
inputs
=
{
'X'
:
input_np
,
'Label'
:
label_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
def
init_test_case
(
self
):
self
.
shape
=
[
10
,
10
]
class
TestBceLossOpCase1
(
TestBceLossOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
]
class
TestBceLossOpCase2
(
TestBceLossOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
2
,
3
,
20
]
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录