未验证 提交 1adf5430 编写于 作者: 六个骨头 提交者: GitHub

[Paddle Inference] Add add onehot trt converter (#48655)

* add onehot trt converter

* add unitest

* fix bug

* opt code

* fix bug

* fix depth_tensor

* fix unitest

* fix bug

* fix unitest

* fix bug

* fix bug

* fix bug

* fix bug
上级 73688894
...@@ -2299,6 +2299,8 @@ USE_TRT_CONVERTER(conv2d_transpose); ...@@ -2299,6 +2299,8 @@ USE_TRT_CONVERTER(conv2d_transpose);
USE_TRT_CONVERTER(leaky_relu); USE_TRT_CONVERTER(leaky_relu);
USE_TRT_CONVERTER(shuffle_channel); USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(where); USE_TRT_CONVERTER(where);
USE_TRT_CONVERTER(one_hot);
USE_TRT_CONVERTER(one_hot_v2);
USE_TRT_CONVERTER(swish); USE_TRT_CONVERTER(swish);
USE_TRT_CONVERTER(silu); USE_TRT_CONVERTER(silu);
USE_TRT_CONVERTER(group_norm); USE_TRT_CONVERTER(group_norm);
......
...@@ -27,6 +27,7 @@ list( ...@@ -27,6 +27,7 @@ list(
shuffle_channel_op.cc shuffle_channel_op.cc
fill_any_like_op.cc fill_any_like_op.cc
where_op.cc where_op.cc
one_hot_op.cc
swish_op.cc swish_op.cc
silu_op.cc silu_op.cc
instance_norm_op.cc instance_norm_op.cc
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* OneHot Op
*/
class OneHotOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
#if IS_TRT_VERSION_GE(8510)
VLOG(3) << "convert a fluid one_hot op to tensorrt one_hot layer";
framework::OpDesc op_desc(op, nullptr);
const auto indices_tensor = engine_->GetITensor(op_desc.Input("X").front());
nvinfer1::ITensor* values_tensor;
nvinfer1::ITensor* depth_tensor;
const int dtype = PADDLE_GET_CONST(int, op_desc.GetAttr("dtype"));
if (dtype == 2 || dtype == 3) { // int, int64
const std::vector<int> values_data = {0, 1};
values_tensor = Add1DConstantLayer<int>(values_data, "values_tensor");
if (dtype == 3) { // int64
VLOG(3) << "trt not support int64, so it is converted to int32.";
}
} else if (dtype == 5 || dtype == 6) { // float
const std::vector<float> values_data = {0.0f, 1.0f};
values_tensor = Add1DConstantLayer<float>(values_data, "values_tensor");
if (dtype == 6) { // int64
VLOG(3) << "trt not support float64, so it is converted to float32.";
}
}
auto depth_name = op_desc.Input("depth_tensor");
if (depth_name.size() == 0) {
const int depth = PADDLE_GET_CONST(int, op_desc.GetAttr("depth"));
depth_tensor = Add1DConstantLayer<int>(depth, "depth_tensor", true);
} else {
nvinfer1::Dims depth_dims;
depth_dims.nbDims = 0;
nvinfer1::ITensor* depth_tensor_paddle =
engine_->GetITensor(depth_name.front());
auto shuffle_layer =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *depth_tensor_paddle);
shuffle_layer->setReshapeDimensions(depth_dims);
shuffle_layer->getOutput(0)->setName(depth_tensor_paddle->getName());
depth_tensor = shuffle_layer->getOutput(0);
}
auto layer = TRT_ENGINE_ADD_LAYER(
engine_, OneHot, *indices_tensor, *values_tensor, *depth_tensor, -1);
auto output_name = op_desc.Output("Out").front();
RreplenishLayerAndOutput(layer, "one_hot", {output_name}, test_mode);
#else
VLOG(3) << "one_hot is not supported when TensorRT < 8.5.1";
#endif
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(one_hot, OneHotOpConverter);
REGISTER_TRT_OP_CONVERTER(one_hot_v2, OneHotOpConverter);
...@@ -1783,6 +1783,45 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -1783,6 +1783,45 @@ struct SimpleOpTypeSetTeller : public Teller {
} }
} }
if (op_type == "one_hot" || op_type == "one_hot_v2") {
#if IS_TRT_VERSION_LT(8510)
VLOG(3) << "one_hot/one_hot_v2 is not supported when TensorRT < 8.5.1";
return false;
#endif
if (!with_dynamic_shape) {
VLOG(3)
<< "the one_hot/one_hot_v2 op does not support static shape yet";
return false;
}
if (desc.HasAttr("allow_out_of_range")) {
VLOG(3)
<< "allow_out_of_range one_hot/one_hot_v2 op is not supported now.";
if (PADDLE_GET_CONST(bool, desc.GetAttr("allow_out_of_range")))
return false;
}
if (desc.HasAttr("dtype")) {
const int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
if (dtype != 2 && dtype != 3 && dtype != 5) {
VLOG(3) << "one_hot/one_hot_v2 op only support int32, int64, float.";
return false;
}
}
auto one_hot_inputs = desc.Inputs();
if (one_hot_inputs.find("depth_tensor") != one_hot_inputs.end()) {
if (desc.Input("depth_tensor").size() != 0) {
return true;
}
}
if (desc.HasAttr("depth")) {
const int depth = PADDLE_GET_CONST(int, desc.GetAttr("depth"));
if (depth <= 0) {
VLOG(3) << "depth only support positive in one_hot/one_hot_v2 op.";
return false;
}
}
}
if (op_type == "skip_layernorm") { if (op_type == "skip_layernorm") {
if (!with_dynamic_shape) { if (!with_dynamic_shape) {
VLOG(3) << "the skip_layernorm does not support static shape yet"; VLOG(3) << "the skip_layernorm does not support static shape yet";
...@@ -2447,6 +2486,8 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -2447,6 +2486,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"fc", "fc",
"shuffle_channel", "shuffle_channel",
"where", "where",
"one_hot",
"one_hot_v2",
"swish", "swish",
"silu", "silu",
"celu", "celu",
...@@ -2588,6 +2629,8 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -2588,6 +2629,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"fc", "fc",
"shuffle_channel", "shuffle_channel",
"where", "where",
"one_hot",
"one_hot_v2",
"swish", "swish",
"silu", "silu",
"celu", "celu",
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from functools import partial
from typing import List
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import paddle.inference as paddle_infer
class TrtConvertOneHotTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
ver = paddle_infer.get_trt_compile_version()
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 8510:
return False
return True
def sample_program_configs(self):
self.trt_param.workspace_size = 1073741824
def generate_indices(dims, batch):
if dims == 2:
return np.random.randint(0, 10, (batch, 4), dtype=np.int32)
elif dims == 3:
return np.random.randint(0, 10, (batch, 4, 6), dtype=np.int32)
else:
return np.random.randint(
0, 10, (batch, 4, 6, 8), dtype=np.int32
)
def generate_depth(dims, batch):
return np.ones((1,), dtype=np.int32) * 10
for dims in [2, 3, 4]:
for batch in [1, 2]:
self.dims = dims
dics = [{"dtype": 5, "depth": 10}, {}]
ops_config = [
{
"op_type": "one_hot",
"op_inputs": {
"X": ["input_x_data"],
"depth_tensor": ["input_depth_data"],
},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": dics[0],
"outputs_dtype": {"output_data": np.int},
},
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={
"depth_tensor": TensorConfig(
data_gen=partial(generate_depth, dims, batch)
),
},
inputs={
"indices_tensor": TensorConfig(
data_gen=partial(generate_indices, dims, batch)
),
},
outputs=["output_data"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 1:
self.dynamic_shape.min_input_shape = {
"input_x_data": [1],
}
self.dynamic_shape.max_input_shape = {
"input_x_data": [2],
}
self.dynamic_shape.opt_input_shape = {
"input_x_data": [1],
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"input_x_data": [1, 4],
}
self.dynamic_shape.max_input_shape = {
"input_x_data": [2, 4],
}
self.dynamic_shape.opt_input_shape = {
"input_x_data": [1, 4],
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"input_x_data": [1, 4, 6],
}
self.dynamic_shape.max_input_shape = {
"input_x_data": [2, 4, 6],
}
self.dynamic_shape.opt_input_shape = {
"input_x_data": [1, 4, 6],
}
elif self.dims == 4:
self.dynamic_shape.min_input_shape = {
"input_x_data": [1, 4, 6, 8],
}
self.dynamic_shape.max_input_shape = {
"input_x_data": [2, 4, 6, 8],
}
self.dynamic_shape.opt_input_shape = {
"input_x_data": [1, 4, 6, 8],
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if not dynamic_shape:
return 0, 3
return 1, 2
attrs = [op.attrs for op in program_config.ops]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册