未验证 提交 189ac02b 编写于 作者: 1 123malin 提交者: GitHub

test=develop, add distributed tools (#22623) (#22637)

上级 77428e8f
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.contrib.utils import HDFSClient from paddle.fluid.contrib.utils import HDFSClient
import os import os
import time
def check_all_trainers_ready(ready_path, epoch): def check_all_trainers_ready(ready_path, epoch):
......
...@@ -23,15 +23,19 @@ import sys ...@@ -23,15 +23,19 @@ import sys
import time import time
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.log_helper import get_logger from paddle.fluid.log_helper import get_logger
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet as fleet_pslib
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet as fleet_transpiler
from . import hdfs from . import hdfs
from .hdfs import * from .hdfs import *
from . import utils
__all__ = ["FleetUtil"] __all__ = ["FleetUtil"]
_logger = get_logger( _logger = get_logger(
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
fleet = fleet_pslib
class FleetUtil(object): class FleetUtil(object):
""" """
...@@ -46,6 +50,16 @@ class FleetUtil(object): ...@@ -46,6 +50,16 @@ class FleetUtil(object):
""" """
def __init__(self, mode="pslib"):
global fleet
if mode == "pslib":
fleet = fleet_pslib
elif mode == "transpiler":
fleet = fleet_transpiler
else:
raise ValueError(
"Please choose one mode from [\"pslib\", \"transpiler\"]")
def rank0_print(self, s): def rank0_print(self, s):
""" """
Worker of rank 0 print some log. Worker of rank 0 print some log.
...@@ -1535,3 +1549,69 @@ class FleetUtil(object): ...@@ -1535,3 +1549,69 @@ class FleetUtil(object):
(print_prefix, auc, bucket_error, mae, rmse, (print_prefix, auc, bucket_error, mae, rmse,
actual_ctr, predicted_ctr, copc, mean_predict_qvalue, actual_ctr, predicted_ctr, copc, mean_predict_qvalue,
total_ins_num)) total_ins_num))
def program_type_trans(self, prog_dir, prog_fn, is_text):
return utils.program_type_trans(prog_dir, prog_fn, is_text)
def draw_from_program_file(self, model_filename, is_text, output_dir,
output_filename):
"""draw program from file"""
program = utils.load_program(model_filename, is_text)
utils.graphviz(program.global_block(), output_dir, output_filename)
def draw_from_program(self, program, output_dir, output_name):
"""draw Program"""
utils.graphviz(program.global_block(), output_dir, output_name)
def check_two_programs(self, config):
train_prog = utils.load_program(config.train_prog_path,
config.is_text_train_program)
pruned_prog = utils.load_program(config.pruned_prog_path,
config.is_text_pruned_program)
if config.draw:
pruned_dir = os.path.dirname(config.pruned_prog_path)
self.draw_from_program(pruned_prog, pruned_dir,
config.draw_out_name)
res = utils.check_pruned_program_vars(train_prog, pruned_prog)
if res:
_logger.info("check_programs succeed.")
else:
_logger.info(
"check_programs failed. pruned program and train program not match!"
)
return res
def check_vars_and_dump(self, config):
_logger.info("start check_vars_and_dump.")
results = utils.check_saved_vars_try_dump(
config.dump_model_dir, config.dump_program_filename,
config.is_text_dump_program, config.feed_config,
config.fetch_config, config.batch_size, config.save_params_filename)
_logger.info("check_vars_and_dump succeed.")
return results
def parse_program_proto(self, prog_path, is_text, output_dir):
"""
Parse program.proto into a more readable format.
This function will generate three files:
output_dir/vars_all.log,
output_dir/vars_persistable.log,
output_dir/ops.log.
Args:
prog_path(str): proto file path to be parsed.
is_text(bool): proto file is human-readale format or not(binary).
output_dir(str): output dir.
Examples:
.. code-block:: python
from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
fleet_util = FleetUtil()
program_path = "./program.pbtxt"
is_text = True
output_dir = "/tmp/"
fleet_util.parse_program_proto(program_path, is_text, output_dir)
"""
program = utils.load_program(prog_path, is_text)
utils.parse_program(program, output_dir)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function, absolute_import
import os
import sys
import logging
import subprocess
import numpy as np
from collections import OrderedDict
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.log_helper import get_logger
from google.protobuf import text_format
from paddle.fluid import debugger
from paddle.fluid.framework import Program
from paddle.fluid.proto import framework_pb2
__all__ = [
"load_program", "save_program", "program_type_trans",
"check_saved_vars_try_dump", "parse_program", "check_pruned_program_vars",
"graphviz"
]
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
persistable_vars_out_fn = "vars_persistable.log"
all_vars_out_fn = "vars_all.log"
ops_out_fn = "ops.log"
feed_fetch_type_list = [
core.VarDesc.VarType.FEED_MINIBATCH, core.VarDesc.VarType.FETCH_LIST
]
not_expected_op_types = ["lookup_table"]
def load_program(model_filename, is_text=False):
if is_text:
return load_program_text(model_filename)
return load_program_binary(model_filename)
def load_program_binary(model_filename):
"""load program from binary string file"""
with open(model_filename, "rb") as f:
program_desc_str = f.read()
return Program.parse_from_string(program_desc_str)
def load_program_text(model_filename):
"""load program from human-readable text file"""
with open(model_filename, "r") as f:
program_desc_text = f.read()
prog_desc = framework_pb2.ProgramDesc()
text_format.Merge(program_desc_text, prog_desc)
return Program.parse_from_string(prog_desc.SerializeToString())
def save_program(program, model_filename='__model__', is_text=False):
if is_text:
with open(model_filename, "w") as f:
f.write(str(program))
else:
with open(model_filename, "wb") as f:
f.write(program.desc.serialize_to_string())
def check_pruned_program_vars(train_prog, pruned_prog):
is_match = True
pruned_vars = [(v.name, v) for v in pruned_prog.list_vars()
if fluid.io.is_persistable(v)]
pruned_vars = OrderedDict(pruned_vars)
pruned_vars_name = [name for name in pruned_vars]
logger.info("persistable vars in pruned program: {}".format(
pruned_vars_name))
for var_name in pruned_vars:
var = pruned_vars[var_name]
# feed and fetch op is added in pruned program when pruning, not need to be found in train program
if var.type in feed_fetch_type_list:
break
try:
train_prog_var = train_prog.global_block().var(var_name)
except ValueError as e:
logger.error(
"not find variable '%s' in train program. please check pruning."
% var_name)
logger.error(e)
continue
if var.shape != train_prog_var.shape or var.dtype != train_prog_var.dtype:
logger.error(
"variable: {} not match. in pruned program shape: {} dtype:{}, in train program shape: {} dtype: {}".
format(var_name, var.shape, var.dtype, train_prog_var.shape,
train_prog_var.dtype))
is_match = False
return is_match
def graphviz(block, output_dir="", filename='debug'):
dot_path = os.path.join(output_dir, filename + '.dot')
pdf_path = os.path.join(output_dir, filename + '.pdf')
debugger.draw_block_graphviz(block, path=dot_path)
cmd = ["dot", "-Tpdf", dot_path, "-o", pdf_path]
p = subprocess.Popen(
cmd,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
p.wait()
def program_type_trans(prog_dir, prog_fn, is_text):
prog = load_program(os.path.join(prog_dir, prog_fn), is_text)
prog_out_fn = prog_fn + ".bin" if is_text else prog_fn + ".pbtxt"
save_program(prog, os.path.join(prog_dir, prog_out_fn), 1 - is_text)
return prog_out_fn
def append_save_op(block, var, path):
block.append_op(
type='save', inputs={'X': [var]}, outputs={},
attrs={'file_path': path})
def append_load_op(block, var, path):
block.append_op(
type='load',
inputs={},
outputs={'Out': [var]},
attrs={'file_path': path})
def save_var(np_array, var_name, shape_list, dtype, save_path):
program = fluid.Program()
place = fluid.CPUPlace()
exe = fluid.Executor(place)
with fluid.program_guard(program):
d0_data = fluid.layers.data(var_name, shape=shape_list, dtype=dtype)
append_save_op(program.global_block(), d0_data, save_path)
exe.run(feed={var_name: np_array}, fetch_list=[])
def load_var(var_name, shape_list, dtype, save_path):
program = fluid.Program()
place = fluid.CPUPlace()
exe = fluid.Executor(place)
with fluid.program_guard(program):
d0_data = fluid.layers.data(var_name, shape=shape_list, dtype=dtype)
append_load_op(program.global_block(), d0_data, save_path)
outs = exe.run(feed={}, fetch_list=[d0_data])
return outs
def reader(batch_size, fn, dim):
data = []
if isinstance(dim, list) or isinstance(dim, tuple):
shape = list(dim)
_temp = 1
for x in dim:
_temp = _temp * x
dim = _temp
else:
shape = [dim]
shape = [batch_size] + shape
dim = dim * batch_size
for line in open(fn, 'r'):
fields = line.strip().split(' ')
fields = [float(d) for d in fields]
while len(fields) >= dim:
tmp = fields[:dim]
fields = fields[dim:]
data.append(np.array(tmp).reshape(shape))
return data
def feed_gen(batch_size, feeded_vars_dims, feeded_vars_filelist):
batch_feed = []
for i, fn in enumerate(feeded_vars_filelist):
batch_feed.append(reader(batch_size, fn, feeded_vars_dims[i]))
return batch_feed
def try_load_model_vars(dump_dir, dump_prog_fn, is_text_dump_program,
batch_size, feed_config, fetch_config, save_filename,
saved_params):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
if is_text_dump_program:
dump_prog_fn = program_type_trans(dump_dir, dump_prog_fn,
is_text_dump_program)
inference_program, feed_target_names, fetch_targets = \
fluid.io.load_inference_model(dump_dir, exe, model_filename=dump_prog_fn,
params_filename=save_filename)
# check program vars and saved vars shape
orig_para_shape = {
each_var.name: tuple(each_var.desc.shape())
for each_var in saved_params
}
for each_var in saved_params:
var_temp = fluid.global_scope().find_var(each_var.name)
assert var_temp != None, "can't not find var: " + each_var.name
new_shape = (np.array(var_temp.get_tensor())).shape
assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
orig_shape = orig_para_shape.get(each_var.name)
if new_shape != orig_shape:
raise RuntimeError(
"Shape not matching: the Program requires a parameter with a shape of ({}), "
"while the loaded parameter (namely [ {} ]) has a shape of ({}).".
format(orig_shape, each_var.name, new_shape))
# check feed/fetch vars in program and config
fetch_targets_names = [v.name for v in fetch_targets]
if not feed_target_names:
logger.warning("no feed targets in program.")
if not fetch_targets_names:
logger.warning("no fetch targets in program.")
fetch_list = fetch_targets
feed_name_list = feed_target_names
if feed_config.feeded_vars_names is not None and feed_target_names != feed_config.feeded_vars_names:
logger.warning(
"feed vars in program and config are diff: feed in program: {}. feed in config {}.".
format(feed_target_names, feed_config.feeded_vars_names))
feed_name_list = feed_config.feeded_vars_names
# remove feed op in inference_program. new feed op will be added in exe.run
global_block = inference_program.global_block()
need_to_remove_op_index = []
for i, op in enumerate(global_block.ops):
op.desc.set_is_target(False)
if op.type == "feed": # only remove feed op here
need_to_remove_op_index.append(i)
for index in need_to_remove_op_index[::-1]:
global_block._remove_op(index)
if fetch_config.fetch_vars_names is not None and fetch_targets_names != fetch_config.fetch_vars_names:
logger.warning(
"fetch vars in program and config are diff: fetch in program: {}. fetch in config {}.".
format(fetch_targets_names, fetch_config.fetch_vars_names))
fetch_list = [
inference_program.global_block().var(i)
for i in fetch_config.fetch_vars_names
]
# remove fetch op in inference_program. new fetch op will be added in exe.run
global_block = inference_program.global_block()
need_to_remove_op_index = []
for i, op in enumerate(global_block.ops):
op.desc.set_is_target(False)
if op.type == "fetch": # only remove fetch op here
need_to_remove_op_index.append(i)
for index in need_to_remove_op_index[::-1]:
global_block._remove_op(index)
# if fetch_list have lod tensor
return_numpy = all([v.lod_level == 0 for v in fetch_list])
# try dump fetch_targets
feed_tensors = []
assert len(feed_config.feeded_vars_names) == len(
feed_config.feeded_vars_dims) == len(feed_config.feeded_vars_types)
# check program vars and feed tensor shape in config
for i in range(len(feed_config.feeded_vars_names)):
var = inference_program.global_block().var(
feed_config.feeded_vars_names[i])
if not isinstance(feed_config.feeded_vars_dims[i], (list, tuple)):
tensor_shape = (feed_config.feeded_vars_dims[i], )
else:
tensor_shape = tuple(feed_config.feeded_vars_dims[i])
feed_config.feeded_vars_dims[i] = tensor_shape
var_shape = var.shape[1:]
if tensor_shape != var_shape:
raise RuntimeError(
"feed variable '{}' shape not match. infer program shape: {}. feed tensor shape: {}".
format(feed_config.feeded_vars_names[i], var_shape,
tensor_shape))
if not feed_config.feeded_vars_filelist:
logger.info("generate random feed vars.")
for i in range(len(feed_config.feeded_vars_names)):
var = inference_program.global_block().var(
feed_config.feeded_vars_names[i])
# create fake feed tensor. if lod_level > 1, should create_lod_tensor()
if var.lod_level == 0:
feed_tensors.append(
np.array(
np.random.random(
tuple([batch_size] + list(
feed_config.feeded_vars_dims[i]))),
dtype=feed_config.feeded_vars_types[i]))
elif var.lod_level == 1:
t = np.array(
np.random.random(
tuple([batch_size] + list(
feed_config.feeded_vars_dims[i]))),
dtype=feed_config.feeded_vars_types[i])
feed_tensors.append(
fluid.create_lod_tensor(t, [[1] * batch_size], place))
else:
raise RuntimeError(
"vars with lod_level >= 2 is not supported now in this infer program check tool."
)
results = exe.run(inference_program,
feed={
name: feed_tensors[i]
for i, name in enumerate(feed_name_list)
},
fetch_list=fetch_list,
return_numpy=return_numpy)
else:
logger.info("load feed vars from files: {}.".format(
feed_config.feeded_vars_filelist))
feed_vars = [
inference_program.global_block().var(
feed_config.feeded_vars_names[i])
for i in range(len(feed_config.feeded_vars_names))
]
feeder = fluid.DataFeeder(feed_list=feed_vars, place=place)
batch_feed = feed_gen(batch_size, feed_config.feeded_vars_dims,
feed_config.feeded_vars_filelist)
slots = [batch_feed]
results = exe.run(inference_program,
feed=feeder.feed(slots),
fetch_list=fetch_list,
return_numpy=return_numpy)
for i, v in enumerate(fetch_list):
logger.info("fetch_targets name: %s" % v.name)
logger.info("fetch_targets: {}".format(results[i]))
return results
def check_not_expected_ops(prog):
op_types_set = set()
for op in prog.global_block().ops:
if op.type in not_expected_op_types and op.type not in op_types_set:
logger.warning(
"find op type '{}' in program, please check if your program is pruned correctly !".
format(op.type))
op_types_set.add(op.type)
def check_saved_vars_try_dump(dump_dir,
dump_prog_fn,
is_text_dump_program,
feed_config,
fetch_config,
batch_size=1,
save_filename=None):
dump_prog = load_program(
os.path.join(dump_dir, dump_prog_fn), is_text_dump_program)
saved_params = [
v for v in dump_prog.list_vars() if fluid.io.is_persistable(v)
]
logger.info("persistable vars in dump program: {}".format(
[v.name for v in saved_params]))
check_not_expected_ops(dump_prog)
return try_load_model_vars(dump_dir, dump_prog_fn, is_text_dump_program,
batch_size, feed_config, fetch_config,
save_filename, saved_params)
def parse_program(program, output_dir):
# persistable vars
output = {}
persistable_vars = [
v for v in program.list_vars() if fluid.io.is_persistable(v)
]
output["persistable_vars"] = [{
'name': str(v.name),
'shape': str(v.shape),
'lod_level': int(v.lod_level),
'dtype': str(v.dtype),
'type': str(v.type)
} for v in persistable_vars]
with open(os.path.join(output_dir, persistable_vars_out_fn), 'w') as f:
f.write("persistable vars:\n")
for var in output["persistable_vars"]:
f.write(str(var))
f.write("\n")
# all vars
all_vars = [v for v in program.list_vars()]
output["all_vars"] = [{
'name': str(v.name),
'shape': str(v.shape),
'lod_level': int(v.lod_level),
'dtype': str(v.dtype)
} if v.type not in feed_fetch_type_list else {
'name': str(v.name),
'type': str(v.type)
} for v in all_vars]
with open(os.path.join(output_dir, all_vars_out_fn), 'w') as f:
f.write("all vars:\n")
for var in output["all_vars"]:
f.write(str(var))
f.write("\n")
# ops
ops = program.global_block().ops
output["ops"] = [{
'type': op.type,
'input_arg_names': str(op.input_arg_names),
'output_arg_names': str(op.output_arg_names)
} for op in ops]
with open(os.path.join(output_dir, ops_out_fn), 'w') as f:
f.write("ops:\n")
for op in output["ops"]:
f.write(str(op))
f.write("\n")
...@@ -13,14 +13,43 @@ ...@@ -13,14 +13,43 @@
# limitations under the License. # limitations under the License.
from __future__ import print_function from __future__ import print_function
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import unittest import unittest
import numpy as np
import tarfile
import tempfile
import os
import sys
from paddle.dataset.common import download, DATA_HOME
import paddle.fluid.incubate.fleet.base.role_maker as role_maker import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.utils.fleet_barrier_util import check_all_trainers_ready from paddle.fluid.incubate.fleet.utils.fleet_barrier_util import check_all_trainers_ready
from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
import paddle.fluid.incubate.fleet.utils.utils as utils
class TestFleetUtils(unittest.TestCase): class TestFleetUtils(unittest.TestCase):
proto_data_url = "https://fleet.bj.bcebos.com/fleet_util_data.tgz"
proto_data_md5 = "59b7f12fd9dc24b64ae8e4629523a92a"
module_name = "fleet_util_data"
pruned_dir = os.path.join("fleet_util_data", "pruned_model")
train_dir = os.path.join("fleet_util_data", "train_program")
def download_files(self):
path = download(self.proto_data_url, self.module_name,
self.proto_data_md5)
print('data is downloaded at ' + path)
tar = tarfile.open(path)
unzip_folder = tempfile.mkdtemp()
tar.extractall(unzip_folder)
return unzip_folder
def test_fleet_util_init(self):
fleet_util_pslib = FleetUtil()
fleet_util_transpiler = FleetUtil(mode="transpiler")
self.assertRaises(Exception, FleetUtil, "other")
def test_fleet_barrier(self): def test_fleet_barrier(self):
role = role_maker.UserDefinedRoleMaker( role = role_maker.UserDefinedRoleMaker(
current_id=0, current_id=0,
...@@ -30,6 +59,165 @@ class TestFleetUtils(unittest.TestCase): ...@@ -30,6 +59,165 @@ class TestFleetUtils(unittest.TestCase):
fleet.init(role) fleet.init(role)
check_all_trainers_ready("/ready_path/", 0) check_all_trainers_ready("/ready_path/", 0)
def test_program_type_trans(self):
data_dir = self.download_files()
program_dir = os.path.join(data_dir, self.pruned_dir)
text_program = "pruned_main_program.pbtxt"
binary_program = "pruned_main_program.bin"
fleet_util = FleetUtil()
text_to_binary = fleet_util.program_type_trans(program_dir,
text_program, True)
binary_to_text = fleet_util.program_type_trans(program_dir,
binary_program, False)
self.assertTrue(
os.path.exists(os.path.join(program_dir, text_to_binary)))
self.assertTrue(
os.path.exists(os.path.join(program_dir, binary_to_text)))
def test_parse_program_proto(self):
data_dir = self.download_files()
parse_program_file_path = os.path.join(
data_dir,
os.path.join(self.pruned_dir, "pruned_main_program.pbtxt"))
is_text_parse_program = True
parse_output_dir = os.path.join(data_dir, self.pruned_dir)
fleet_util = FleetUtil()
fleet_util.parse_program_proto(parse_program_file_path,
is_text_parse_program, parse_output_dir)
ops_log = os.path.join(parse_output_dir, "ops.log")
vars_log = os.path.join(parse_output_dir, "vars_all.log")
vars_persistable = os.path.join(parse_output_dir,
"vars_persistable.log")
self.assertTrue(os.path.exists(ops_log))
self.assertTrue(os.path.exists(vars_log))
self.assertTrue(os.path.exists(vars_persistable))
def test_check_vars_and_dump(self):
data_dir = self.download_files()
class config:
pass
feed_config = config()
feed_config.feeded_vars_names = ['concat_1.tmp_0', 'concat_2.tmp_0']
feed_config.feeded_vars_dims = [682, 1199]
feed_config.feeded_vars_types = [np.float32, np.float32]
feed_config.feeded_vars_filelist = [
os.path.join(data_dir, os.path.join(self.pruned_dir, "concat_1")),
os.path.join(data_dir, os.path.join(self.pruned_dir, "concat_2"))
]
fetch_config = config()
fetch_config.fetch_vars_names = ['similarity_norm.tmp_0']
conf = config()
conf.batch_size = 1
conf.feed_config = feed_config
conf.fetch_config = fetch_config
conf.dump_model_dir = os.path.join(data_dir, self.pruned_dir)
conf.dump_program_filename = "pruned_main_program.pbtxt"
conf.is_text_dump_program = True
conf.save_params_filename = None
fleet_util = FleetUtil()
# test saved var's shape
conf.dump_program_filename = "pruned_main_program.save_var_shape_not_match"
self.assertRaises(Exception, fleet_util.check_vars_and_dump, conf)
# test program.proto without feed_op and fetch_op
conf.dump_program_filename = "pruned_main_program.no_feed_fetch"
results = fleet_util.check_vars_and_dump(conf)
self.assertTrue(len(results) == 1)
np.testing.assert_array_almost_equal(
results[0], np.array(
[[3.0590223e-07]], dtype=np.float32))
# test feed_var's shape
conf.dump_program_filename = "pruned_main_program.feed_var_shape_not_match"
self.assertRaises(Exception, fleet_util.check_vars_and_dump, conf)
# test correct case with feed_vars_filelist
conf.dump_program_filename = "pruned_main_program.pbtxt"
results = fleet_util.check_vars_and_dump(conf)
self.assertTrue(len(results) == 1)
np.testing.assert_array_almost_equal(
results[0], np.array(
[[3.0590223e-07]], dtype=np.float32))
# test correct case without feed_vars_filelist
conf.feed_config.feeded_vars_filelist = None
# test feed var with lod_level >= 2
conf.dump_program_filename = "pruned_main_program.feed_lod2"
self.assertRaises(Exception, fleet_util.check_vars_and_dump, conf)
conf.dump_program_filename = "pruned_main_program.pbtxt"
results = fleet_util.check_vars_and_dump(conf)
self.assertTrue(len(results) == 1)
def test_check_two_programs(self):
data_dir = self.download_files()
class config:
pass
conf = config()
conf.train_prog_path = os.path.join(
data_dir, os.path.join(self.train_dir, "join_main_program.pbtxt"))
conf.is_text_train_program = True
# test not match
conf.pruned_prog_path = os.path.join(
data_dir,
os.path.join(self.pruned_dir,
"pruned_main_program.save_var_shape_not_match"))
conf.is_text_pruned_program = True
conf.draw = False
fleet_util = FleetUtil()
res = fleet_util.check_two_programs(conf)
self.assertFalse(res)
# test match
conf.pruned_prog_path = os.path.join(
data_dir,
os.path.join(self.pruned_dir, "pruned_main_program.pbtxt"))
if sys.platform == 'win32' or sys.platform == 'sys.platform':
conf.draw = False
else:
conf.draw = True
conf.draw_out_name = "pruned_check"
res = fleet_util.check_two_programs(conf)
self.assertTrue(res)
def test_draw_program(self):
if sys.platform == 'win32' or sys.platform == 'sys.platform':
pass
else:
data_dir = self.download_files()
program_path = os.path.join(
data_dir,
os.path.join(self.train_dir, "join_main_program.pbtxt"))
is_text = True
program = utils.load_program(program_path, is_text)
output_dir = os.path.join(data_dir, self.train_dir)
output_filename_1 = "draw_prog_1"
output_filename_2 = "draw_prog_2"
fleet_util = FleetUtil()
fleet_util.draw_from_program_file(program_path, is_text, output_dir,
output_filename_1)
fleet_util.draw_from_program(program, output_dir, output_filename_2)
self.assertTrue(
os.path.exists(
os.path.join(output_dir, output_filename_1 + ".dot")))
self.assertTrue(
os.path.exists(
os.path.join(output_dir, output_filename_1 + ".pdf")))
self.assertTrue(
os.path.exists(
os.path.join(output_dir, output_filename_2 + ".dot")))
self.assertTrue(
os.path.exists(
os.path.join(output_dir, output_filename_2 + ".pdf")))
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册