Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
183377f4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
183377f4
编写于
6月 11, 2018
作者:
C
chengduo
提交者:
GitHub
6月 11, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11306 from chengduoZH/enable_cpu_on_pe
Enable CPU on Parallel executor
上级
d9de6b86
173d72b4
变更
25
隐藏空白更改
内联
并排
Showing
25 changed file
with
250 addition
and
132 deletion
+250
-132
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+4
-4
paddle/fluid/framework/details/all_reduce_op_handle.cc
paddle/fluid/framework/details/all_reduce_op_handle.cc
+26
-13
paddle/fluid/framework/details/all_reduce_op_handle.h
paddle/fluid/framework/details/all_reduce_op_handle.h
+14
-6
paddle/fluid/framework/details/execution_strategy.h
paddle/fluid/framework/details/execution_strategy.h
+1
-1
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+29
-22
paddle/fluid/framework/details/multi_devices_graph_builder.h
paddle/fluid/framework/details/multi_devices_graph_builder.h
+4
-1
paddle/fluid/framework/details/op_handle_base.cc
paddle/fluid/framework/details/op_handle_base.cc
+3
-3
paddle/fluid/framework/details/op_handle_base.h
paddle/fluid/framework/details/op_handle_base.h
+1
-1
paddle/fluid/framework/details/reduce_and_gather.h
paddle/fluid/framework/details/reduce_and_gather.h
+3
-1
paddle/fluid/framework/details/ssa_graph_builder_factory.h
paddle/fluid/framework/details/ssa_graph_builder_factory.h
+5
-1
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+1
-1
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+29
-19
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+4
-4
python/paddle/dataset/flowers.py
python/paddle/dataset/flowers.py
+2
-1
python/paddle/fluid/data_feeder.py
python/paddle/fluid/data_feeder.py
+4
-1
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+9
-8
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-2
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+8
-3
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
...addle/fluid/tests/unittests/test_parallel_executor_crf.py
+20
-7
python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py
...luid/tests/unittests/test_parallel_executor_fetch_feed.py
+19
-8
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
...dle/fluid/tests/unittests/test_parallel_executor_mnist.py
+29
-13
python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py
...fluid/tests/unittests/test_parallel_executor_seresnext.py
+13
-4
python/paddle/fluid/tests/unittests/test_parallel_executor_test_while_train.py
...ests/unittests/test_parallel_executor_test_while_train.py
+14
-6
python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py
...uid/tests/unittests/test_parallel_executor_transformer.py
+4
-1
python/paddle/v2/dataset/flowers.py
python/paddle/v2/dataset/flowers.py
+2
-1
未找到文件。
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
183377f4
...
...
@@ -13,14 +13,14 @@ cc_library(ssa_graph_checker SRCS ssa_graph_checker.cc DEPS ssa_graph_builder)
cc_library
(
variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows
)
if
(
WITH_GPU
)
nv_library
(
nccl_all_reduce_op_handle SRCS nccl_
all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
nv_library
(
all_reduce_op_handle SRCS
all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda variable_visitor
)
set
(
multi_devices_graph_builder_deps nccl_all_reduce_op_handle
)
nv_library
(
reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim dynload_cuda
)
nv_library
(
broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor dynload_cuda
)
else
()
set
(
multi_devices_graph_builder_deps
)
cc_library
(
all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
variable_visitor
)
cc_library
(
reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim
)
cc_library
(
broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
endif
()
...
...
@@ -29,7 +29,7 @@ cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope d
cc_library
(
fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope
)
cc_library
(
multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle rpc_op_handle
${
multi_devices_graph_builder_deps
}
reduce_op_handle broadcast_op_handle
)
scale_loss_grad_op_handle rpc_op_handle
all_reduce_op_handle
reduce_op_handle broadcast_op_handle
)
cc_library
(
ssa_graph_builder_factory SRCS ssa_graph_builder_factory.cc DEPS multi_devices_graph_builder ssa_graph_printer ssa_graph_checker
)
...
...
paddle/fluid/framework/details/
nccl_
all_reduce_op_handle.cc
→
paddle/fluid/framework/details/all_reduce_op_handle.cc
浏览文件 @
183377f4
...
...
@@ -13,25 +13,33 @@
// limitations under the License.
#include <algorithm>
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
NCCLAllReduceOpHandle
::
NCCLAllReduceOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
platform
::
NCCLContextMap
&
ctxs
)
#ifdef PADDLE_WITH_CUDA
AllReduceOpHandle
::
AllReduceOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
platform
::
NCCLContextMap
*
ctxs
)
:
local_scopes_
(
local_scopes
),
places_
(
places
),
nccl_ctxs_
(
ctxs
)
{
for
(
auto
&
p
:
places_
)
{
this
->
dev_ctxes_
[
p
]
=
nccl_ctxs_
.
DevCtx
(
p
);
if
(
nccl_ctxs_
)
{
for
(
auto
&
p
:
places_
)
{
this
->
dev_ctxes_
[
p
]
=
nccl_ctxs_
->
DevCtx
(
p
);
}
}
}
#else
AllReduceOpHandle
::
AllReduceOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
)
:
local_scopes_
(
local_scopes
),
places_
(
places
)
{}
#endif
void
NCCL
AllReduceOpHandle
::
RunImpl
()
{
void
AllReduceOpHandle
::
RunImpl
()
{
if
(
NoDummyInputSize
()
==
1
)
{
return
;
// No need to all reduce when GPU count = 1;
}
else
{
...
...
@@ -58,6 +66,8 @@ void NCCLAllReduceOpHandle::RunImpl() {
}
if
(
platform
::
is_gpu_place
(
lod_tensors
[
0
]
->
place
()))
{
#ifdef PADDLE_WITH_CUDA
PADDLE_ENFORCE
(
nccl_ctxs_
,
"nccl_ctxs should not be nullptr."
);
int
dtype
=
-
1
;
size_t
numel
=
0
;
std
::
vector
<
std
::
function
<
void
()
>>
all_reduce_calls
;
...
...
@@ -75,7 +85,7 @@ void NCCLAllReduceOpHandle::RunImpl() {
}
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
auto
&
nccl_ctx
=
nccl_ctxs_
.
at
(
dev_id
);
auto
&
nccl_ctx
=
nccl_ctxs_
->
at
(
dev_id
);
auto
stream
=
nccl_ctx
.
stream
();
auto
comm
=
nccl_ctx
.
comm_
;
all_reduce_calls
.
emplace_back
([
=
]
{
...
...
@@ -90,22 +100,25 @@ void NCCLAllReduceOpHandle::RunImpl() {
call
();
}
});
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
}
else
{
// Special handle CPU only Operator's gradient. Like CRF
auto
&
trg
=
*
this
->
local_scopes_
[
0
]
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
()
->
Var
(
)
->
FindVar
(
out_var_handles
[
0
]
->
name_
)
->
GetMutable
<
framework
::
LoDTensor
>
();
// Reduce All Tensor to trg in CPU
ReduceLoDTensor
func
(
lod_tensors
,
&
trg
);
VisitDataType
(
ToDataType
(
lod_tensors
[
0
]
->
type
()),
func
);
for
(
size_t
i
=
0
;
i
<
local_scopes_
.
size
();
++
i
)
{
for
(
size_t
i
=
1
;
i
<
local_scopes_
.
size
();
++
i
)
{
auto
&
scope
=
*
local_scopes_
[
i
]
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
auto
&
p
=
places_
[
i
];
auto
*
var
=
scope
.
FindVar
(
in
_var_handles
[
i
]
->
name_
);
auto
*
var
=
scope
.
FindVar
(
out
_var_handles
[
i
]
->
name_
);
auto
*
dev_ctx
=
dev_ctxes_
[
p
];
RunAndRecordEvent
(
p
,
[
&
trg
,
var
,
dev_ctx
,
p
]
{
...
...
@@ -118,7 +131,7 @@ void NCCLAllReduceOpHandle::RunImpl() {
}
}
std
::
string
NCCLAllReduceOpHandle
::
Name
()
const
{
return
"nccl_
all_reduce"
;
}
std
::
string
AllReduceOpHandle
::
Name
()
const
{
return
"
all_reduce"
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/
nccl_
all_reduce_op_handle.h
→
paddle/fluid/framework/details/all_reduce_op_handle.h
浏览文件 @
183377f4
...
...
@@ -20,17 +20,23 @@
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
NCCLAllReduceOpHandle
:
public
OpHandleBase
{
NCCLAllReduceOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
platform
::
NCCLContextMap
&
ctxs
);
struct
AllReduceOpHandle
:
public
OpHandleBase
{
#ifdef PADDLE_WITH_CUDA
AllReduceOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
platform
::
NCCLContextMap
*
ctxs
);
#else
AllReduceOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
);
#endif
std
::
string
Name
()
const
override
;
// Delay and buffer nccl_all_reduce together can significantly increase
...
...
@@ -43,7 +49,9 @@ struct NCCLAllReduceOpHandle : public OpHandleBase {
private:
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
const
platform
::
NCCLContextMap
&
nccl_ctxs_
;
#ifdef PADDLE_WITH_CUDA
const
platform
::
NCCLContextMap
*
nccl_ctxs_
;
#endif
};
}
// namespace details
...
...
paddle/fluid/framework/details/execution_strategy.h
浏览文件 @
183377f4
...
...
@@ -20,7 +20,7 @@ namespace details {
struct
ExecutionStrategy
{
size_t
num_threads_
{
0
};
bool
use_
event
_
{
true
};
bool
use_
cuda
_
{
true
};
bool
allow_op_delay_
{
false
};
size_t
num_iteration_per_drop_scope_
{
100
};
};
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
183377f4
...
...
@@ -17,6 +17,7 @@
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
...
...
@@ -26,10 +27,6 @@
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/scope.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
namespace
paddle
{
namespace
framework
{
namespace
details
{
...
...
@@ -243,7 +240,7 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
CreateReduceOp
(
&
result
,
g_name
,
0
);
CreateBroadcastOp
(
&
result
,
g_name
,
0
);
}
else
{
Insert
NCCL
AllReduceOp
(
&
result
,
g_name
);
InsertAllReduceOp
(
&
result
,
g_name
);
}
break
;
}
...
...
@@ -286,6 +283,19 @@ bool MultiDevSSAGraphBuilder::IsSparseGradient(
return
false
;
}
void
MultiDevSSAGraphBuilder
::
SetCommunicationContext
(
OpHandleBase
*
op_handle
,
const
platform
::
Place
&
p
)
const
{
#ifdef PADDLE_WITH_CUDA
if
(
nccl_ctxs_
==
nullptr
)
{
op_handle
->
SetDeviceContext
(
p
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
));
}
#else
op_handle
->
SetDeviceContext
(
p
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
));
#endif
}
void
MultiDevSSAGraphBuilder
::
CreateBroadcastOp
(
SSAGraph
*
result
,
const
std
::
string
&
p_name
,
size_t
src_dev_id
)
const
{
...
...
@@ -300,15 +310,12 @@ void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
op_handle
->
AddInput
(
in
);
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
&
vars
=
result
->
vars_
.
at
(
i
).
at
(
p_name
);
auto
&
p
=
places_
[
i
];
SetCommunicationContext
(
op_handle
,
p
);
auto
&
vars
=
result
->
vars_
.
at
(
i
).
at
(
p_name
);
auto
*
out_var
=
new
VarHandle
(
vars
.
size
(),
i
,
p_name
,
p
);
vars
.
emplace_back
(
out_var
);
op_handle
->
AddOutput
(
out_var
);
#ifndef ADDLE_WITH_CUDA
op_handle
->
SetDeviceContext
(
p
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
));
#endif
}
}
...
...
@@ -320,15 +327,19 @@ void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
CreateOpHandleIOs
(
result
,
op
,
dev_id
);
}
void
MultiDevSSAGraphBuilder
::
Insert
NCCLAllReduceOp
(
SSAGraph
*
result
,
const
std
::
string
&
og
)
const
{
void
MultiDevSSAGraphBuilder
::
Insert
AllReduceOp
(
SSAGraph
*
result
,
const
std
::
string
&
og
)
const
{
#ifdef PADDLE_WITH_CUDA
result
->
ops_
.
emplace_back
(
new
NCCLAllReduceOpHandle
(
local_scopes_
,
places_
,
*
nccl_ctxs_
));
new
AllReduceOpHandle
(
local_scopes_
,
places_
,
nccl_ctxs_
));
#else
result
->
ops_
.
emplace_back
(
new
AllReduceOpHandle
(
local_scopes_
,
places_
));
#endif
auto
*
op_handle
=
result
->
ops_
.
back
().
get
();
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
&
p
=
places_
[
i
];
SetCommunicationContext
(
op_handle
,
p
);
auto
&
vars
=
result
->
vars_
[
i
][
og
];
PADDLE_ENFORCE
(
!
vars
.
empty
());
auto
&
prev_grad
=
vars
.
back
();
...
...
@@ -338,9 +349,6 @@ void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
vars
.
emplace_back
(
var
);
op_handle
->
AddOutput
(
var
);
}
#else
PADDLE_ENFORCE
(
"Not implemented"
);
#endif
}
bool
MultiDevSSAGraphBuilder
::
IsParameterGradientOnce
(
...
...
@@ -379,7 +387,9 @@ void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
auto
*
communication_dev_ctx
=
nccl_ctxs_
->
DevCtx
(
places_
[
i
]);
auto
*
communication_dev_ctx
=
nccl_ctxs_
?
nccl_ctxs_
->
DevCtx
(
places_
[
i
])
:
platform
::
DeviceContextPool
::
Instance
().
Get
(
places_
[
i
]);
#else
auto
*
communication_dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CPUPlace
());
...
...
@@ -424,12 +434,9 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
auto
*
op_handle
=
result
->
ops_
.
back
().
get
();
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
&
vars
=
result
->
vars_
[
i
][
og
];
#ifndef PADDLE_WITH_CUDA
auto
&
p
=
places_
[
i
];
op_handle
->
SetDeviceContext
(
p
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
));
#endif
SetCommunicationContext
(
op_handle
,
p
);
auto
&
vars
=
result
->
vars_
[
i
][
og
];
PADDLE_ENFORCE
(
!
vars
.
empty
());
auto
&
prev_grad
=
vars
.
back
();
op_handle
->
AddInput
(
prev_grad
.
get
());
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.h
浏览文件 @
183377f4
...
...
@@ -100,7 +100,7 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
&
var_name_on_devices
,
const
OpDesc
&
op
)
const
;
void
Insert
NCCL
AllReduceOp
(
SSAGraph
*
result
,
const
std
::
string
&
og
)
const
;
void
InsertAllReduceOp
(
SSAGraph
*
result
,
const
std
::
string
&
og
)
const
;
void
CreateBroadcastOp
(
SSAGraph
*
result
,
const
std
::
string
&
p_name
,
size_t
src_dev_id
)
const
;
...
...
@@ -111,6 +111,9 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
private:
BuildStrategy
strategy_
;
void
SetCommunicationContext
(
OpHandleBase
*
op_handle
,
const
platform
::
Place
&
p
)
const
;
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/op_handle_base.cc
浏览文件 @
183377f4
...
...
@@ -39,9 +39,9 @@ OpHandleBase::~OpHandleBase() {
#endif
}
void
OpHandleBase
::
Run
(
bool
use_
event
)
{
void
OpHandleBase
::
Run
(
bool
use_
cuda
)
{
#ifdef PADDLE_WITH_CUDA
if
(
events_
.
empty
()
&&
use_
event
)
{
if
(
events_
.
empty
()
&&
use_
cuda
)
{
for
(
auto
&
p
:
dev_ctxes_
)
{
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
.
first
).
device
;
PADDLE_ENFORCE
(
cudaSetDevice
(
dev_id
));
...
...
@@ -50,7 +50,7 @@ void OpHandleBase::Run(bool use_event) {
}
}
#else
PADDLE_ENFORCE
(
!
use_
event
);
PADDLE_ENFORCE
(
!
use_
cuda
);
#endif
RunImpl
();
...
...
paddle/fluid/framework/details/op_handle_base.h
浏览文件 @
183377f4
...
...
@@ -36,7 +36,7 @@ class OpHandleBase {
virtual
std
::
string
Name
()
const
=
0
;
void
Run
(
bool
use_
event
);
void
Run
(
bool
use_
cuda
);
virtual
void
RecordWaitEventOnCtx
(
platform
::
DeviceContext
*
waited_ctx
);
...
...
paddle/fluid/framework/details/reduce_and_gather.h
浏览文件 @
183377f4
...
...
@@ -37,7 +37,9 @@ struct ReduceLoDTensor {
PADDLE_ENFORCE_NE
(
t0
.
numel
(),
0
);
dst_tensor_
.
Resize
(
t0
.
dims
());
T
*
dst
=
dst_tensor_
.
mutable_data
<
T
>
(
platform
::
CPUPlace
());
std
::
copy
(
t0
.
data
<
T
>
(),
t0
.
data
<
T
>
()
+
t0
.
numel
(),
dst
);
if
(
dst
!=
t0
.
data
<
T
>
())
{
std
::
copy
(
t0
.
data
<
T
>
(),
t0
.
data
<
T
>
()
+
t0
.
numel
(),
dst
);
}
for
(
size_t
i
=
1
;
i
<
src_tensors_
.
size
();
++
i
)
{
auto
&
t
=
*
src_tensors_
[
i
];
...
...
paddle/fluid/framework/details/ssa_graph_builder_factory.h
浏览文件 @
183377f4
...
...
@@ -40,7 +40,11 @@ class SSAGraphBuilderFactory {
loss_var_name_
(
loss_var_name
),
param_names_
(
param_names
),
local_scopes_
(
local_scopes
),
strategy_
(
strategy
)
{}
strategy_
(
strategy
)
{
#ifdef PADDLE_WITH_CUDA
nccl_ctxs_
=
nullptr
;
#endif
}
#ifdef PADDLE_WITH_CUDA
void
SetNCCLContextMap
(
platform
::
NCCLContextMap
*
nccl_ctxs
)
{
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
183377f4
...
...
@@ -193,7 +193,7 @@ void ThreadedSSAGraphExecutor::RunOp(
if
(
VLOG_IS_ON
(
10
))
{
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" : "
<<
op
->
DebugString
();
}
op
->
Run
(
strategy_
.
use_
event
_
);
op
->
Run
(
strategy_
.
use_
cuda
_
);
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" Done "
;
running_ops_
--
;
ready_var_q
->
Extend
(
op
->
Outputs
());
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
183377f4
...
...
@@ -43,7 +43,8 @@ class ParallelExecutorPrivate {
#ifdef PADDLE_WITH_CUDA
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
#endif
bool
own_local_scope
;
bool
own_local_scope_
;
bool
use_cuda_
;
};
std
::
vector
<
Scope
*>
&
ParallelExecutor
::
GetLocalScopes
()
{
...
...
@@ -60,35 +61,40 @@ ParallelExecutor::ParallelExecutor(
size_t
num_trainers
,
size_t
trainer_id
)
:
member_
(
new
ParallelExecutorPrivate
(
places
))
{
member_
->
global_scope_
=
scope
;
member_
->
use_cuda_
=
exec_strategy
.
use_cuda_
;
// Step 1. Bcast the params to devs.
// Create local scopes
if
(
local_scopes
.
empty
())
{
member_
->
own_local_scope
=
true
;
member_
->
own_local_scope
_
=
true
;
member_
->
local_scopes_
.
emplace_back
(
member_
->
global_scope_
);
for
(
size_t
i
=
1
;
i
<
member_
->
places_
.
size
();
++
i
)
{
member_
->
local_scopes_
.
emplace_back
(
&
scope
->
NewScope
());
}
}
else
{
member_
->
own_local_scope
=
false
;
member_
->
own_local_scope
_
=
false
;
PADDLE_ENFORCE_EQ
(
member_
->
places_
.
size
(),
local_scopes
.
size
());
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
member_
->
local_scopes_
.
emplace_back
(
&
local_scopes
[
i
]
->
NewScope
());
}
}
if
(
member_
->
use_cuda_
)
{
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
auto
*
nccl_id_var
=
scope
->
FindVar
(
NCCL_ID_VARNAME
);
ncclUniqueId
*
nccl_id
=
nullptr
;
if
(
nccl_id_var
!=
nullptr
)
{
nccl_id
=
nccl_id_var
->
GetMutable
<
ncclUniqueId
>
();
}
member_
->
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
member_
->
places_
,
nccl_id
,
num_trainers
,
trainer_id
));
auto
*
nccl_id_var
=
scope
->
FindVar
(
NCCL_ID_VARNAME
);
ncclUniqueId
*
nccl_id
=
nullptr
;
if
(
nccl_id_var
!=
nullptr
)
{
nccl_id
=
nccl_id_var
->
GetMutable
<
ncclUniqueId
>
();
}
member_
->
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
member_
->
places_
,
nccl_id
,
num_trainers
,
trainer_id
));
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
if
(
platform
::
is_gpu_place
(
places
[
0
])
&&
member_
->
local_scopes_
.
size
()
!=
1
&&
local_scopes
.
empty
())
{
// Is CUDA
}
if
(
member_
->
local_scopes_
.
size
()
!=
1
&&
local_scopes
.
empty
())
{
BCastParamsToGPUs
(
bcast_vars
);
}
// Startup Program has been run. All local scopes has correct parameters.
...
...
@@ -108,9 +114,13 @@ ParallelExecutor::ParallelExecutor(
details
::
SSAGraphBuilderFactory
builder_factory
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
build_strategy
);
if
(
member_
->
use_cuda_
)
{
#ifdef PADDLE_WITH_CUDA
builder_factory
.
SetNCCLContextMap
(
member_
->
nccl_ctxs_
.
get
());
builder_factory
.
SetNCCLContextMap
(
member_
->
nccl_ctxs_
.
get
());
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
}
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
places
,
...
...
@@ -123,7 +133,6 @@ ParallelExecutor::ParallelExecutor(
void
ParallelExecutor
::
BCastParamsToGPUs
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
{
#ifdef PADDLE_WITH_CUDA
auto
*
main_scope
=
member_
->
local_scopes_
[
0
];
for
(
auto
&
var
:
vars
)
{
...
...
@@ -135,6 +144,7 @@ void ParallelExecutor::BCastParamsToGPUs(
auto
&
main_tensor
=
main_var
->
Get
<
LoDTensor
>
();
auto
&
dims
=
main_tensor
.
dims
();
if
(
paddle
::
platform
::
is_gpu_place
(
main_tensor
.
place
()))
{
#ifdef PADDLE_WITH_CUDA
size_t
numel
=
main_tensor
.
numel
();
ncclDataType_t
data_type
=
platform
::
ToNCCLDataType
(
main_tensor
.
type
());
platform
::
NCCLGroupGuard
guard
;
...
...
@@ -153,6 +163,10 @@ void ParallelExecutor::BCastParamsToGPUs(
platform
::
dynload
::
ncclBcast
(
buffer
,
numel
,
data_type
,
0
,
nccl_ctx
.
comm_
,
nccl_ctx
.
stream
());
}
member_
->
nccl_ctxs_
->
WaitAll
();
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
}
else
{
platform
::
CPUPlace
cpu
;
for
(
size_t
i
=
1
;
i
<
member_
->
places_
.
size
();
++
i
)
{
...
...
@@ -163,11 +177,7 @@ void ParallelExecutor::BCastParamsToGPUs(
paddle
::
framework
::
TensorCopy
(
main_tensor
,
cpu
,
t
);
}
}
member_
->
nccl_ctxs_
->
WaitAll
();
}
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
}
void
ParallelExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
...
...
@@ -213,7 +223,7 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
}
ParallelExecutor
::~
ParallelExecutor
()
{
if
(
member_
->
own_local_scope
)
{
if
(
member_
->
own_local_scope
_
)
{
for
(
size_t
i
=
1
;
i
<
member_
->
local_scopes_
.
size
();
++
i
)
{
member_
->
global_scope_
->
DeleteScope
(
member_
->
local_scopes_
[
i
]);
}
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
183377f4
...
...
@@ -509,10 +509,10 @@ All parameter, weight, gradient are variables in Paddle.
self
.
num_threads_
=
num_threads
;
})
.
def_property
(
"use_
event
"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
use_
event
_
;
},
[](
ExecutionStrategy
&
self
,
bool
use_
event
)
{
self
.
use_
event_
=
use_event
;
"use_
cuda
"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
use_
cuda
_
;
},
[](
ExecutionStrategy
&
self
,
bool
use_
cuda
)
{
self
.
use_
cuda_
=
use_cuda
;
})
.
def_property
(
"allow_op_delay"
,
...
...
python/paddle/dataset/flowers.py
浏览文件 @
183377f4
...
...
@@ -119,7 +119,8 @@ def reader_creator(data_file,
yield
sample
,
int
(
label
)
-
1
if
use_xmap
:
return
xmap_readers
(
mapper
,
reader
,
cpu_count
(),
buffered_size
)
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
cpu_count
()))
return
xmap_readers
(
mapper
,
reader
,
cpu_num
,
buffered_size
)
else
:
return
map_readers
(
mapper
,
reader
)
...
...
python/paddle/fluid/data_feeder.py
浏览文件 @
183377f4
...
...
@@ -15,6 +15,7 @@
from
__future__
import
print_function
import
core
import
numpy
import
os
import
six.moves
as
six
import
multiprocessing
...
...
@@ -150,7 +151,9 @@ class DataFeeder(object):
elif
isinstance
(
self
.
place
,
core
.
CUDAPlace
):
return
core
.
get_cuda_device_count
()
else
:
return
multiprocessing
.
cpu_count
()
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
return
cpu_num
def
decorate_reader
(
self
,
reader
,
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
183377f4
...
...
@@ -18,6 +18,7 @@ import framework
import
executor
import
warnings
import
sys
import
os
__all__
=
[
'ParallelExecutor'
,
'ExecutionStrategy'
,
'BuildStrategy'
]
...
...
@@ -101,7 +102,9 @@ class ParallelExecutor(object):
p
.
set_place
(
self
.
_act_places
[
-
1
])
self
.
_places
.
append
(
p
)
else
:
for
i
in
xrange
(
multiprocessing
.
cpu_count
()):
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
for
i
in
xrange
(
cpu_num
):
p
=
core
.
Place
()
self
.
_act_places
.
append
(
core
.
CPUPlace
())
p
.
set_place
(
self
.
_act_places
[
-
1
])
...
...
@@ -110,19 +113,17 @@ class ParallelExecutor(object):
if
exec_strategy
is
None
:
exec_strategy
=
ExecutionStrategy
()
if
use_cuda
:
exec_strategy
.
use_event
=
True
else
:
exec_strategy
.
use_event
=
False
exec_strategy
.
use_cuda
=
use_cuda
if
exec_strategy
.
num_threads
==
0
:
if
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
2
exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
4
else
:
exec_strategy
.
num_threads
=
min
(
len
(
self
.
_places
)
*
2
,
multiprocessing
.
cpu_count
())
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
exec_strategy
.
num_threads
=
cpu_num
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
183377f4
...
...
@@ -41,8 +41,8 @@ function(py_test_modules TARGET_NAME)
endfunction
()
list
(
REMOVE_ITEM TEST_OPS test_warpctc_op
)
list
(
REMOVE_ITEM TEST_OPS test_dist_train
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_crf
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed
)
#
list(REMOVE_ITEM TEST_OPS test_parallel_executor_crf)
#
list(REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed)
# TODO(wuyi): this test hungs on CI, will add it back later
list
(
REMOVE_ITEM TEST_OPS test_listen_and_serv_op
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
...
...
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
183377f4
...
...
@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
multiprocessing
import
os
import
unittest
import
paddle.fluid
as
fluid
import
time
...
...
@@ -23,6 +25,7 @@ __all__ = ['TestParallelExecutorBase']
class
TestParallelExecutorBase
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
method
,
use_cuda
=
True
,
memory_opt
=
True
,
iter
=
50
,
batch_size
=
None
,
...
...
@@ -53,7 +56,7 @@ class TestParallelExecutorBase(unittest.TestCase):
adam
.
minimize
(
loss
)
if
memory_opt
:
fluid
.
memory_optimize
(
main
)
place
=
fluid
.
CUDAPlace
(
0
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
startup_exe
=
fluid
.
Executor
(
place
)
startup_exe
.
run
(
startup
)
exec_strategy
=
fluid
.
ExecutionStrategy
()
...
...
@@ -64,7 +67,7 @@ class TestParallelExecutorBase(unittest.TestCase):
if
use_parallel_executor
:
exe
=
fluid
.
ParallelExecutor
(
True
,
use_cuda
,
loss_name
=
loss
.
name
,
exec_strategy
=
exec_strategy
,
build_strategy
=
build_strategy
)
...
...
@@ -72,7 +75,9 @@ class TestParallelExecutorBase(unittest.TestCase):
exe
=
fluid
.
Executor
(
place
=
place
)
if
batch_size
is
not
None
:
batch_size
*=
fluid
.
core
.
get_cuda_device_count
()
batch_size
*=
fluid
.
core
.
get_cuda_device_count
(
)
if
use_cuda
else
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
begin
=
time
.
time
()
first_loss
,
=
run_executor
(
exe
=
exe
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
浏览文件 @
183377f4
...
...
@@ -17,6 +17,7 @@ import paddle.fluid as fluid
import
unittest
import
paddle
import
numpy
as
np
import
os
word_dict
,
verb_dict
,
label_dict
=
conll05
.
get_dict
()
word_dict_len
=
len
(
word_dict
)
...
...
@@ -101,7 +102,11 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
class
TestCRFModel
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
is_sparse
,
build_strategy
=
None
):
def
check_network_convergence
(
self
,
is_sparse
,
build_strategy
=
None
,
use_cuda
=
True
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -145,12 +150,12 @@ class TestCRFModel(unittest.TestCase):
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
16
)
place
=
fluid
.
CUDAPlace
(
0
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
use_cuda
=
use_cuda
,
loss_name
=
avg_cost
.
name
,
build_strategy
=
build_strategy
)
...
...
@@ -172,25 +177,33 @@ class TestCRFModel(unittest.TestCase):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
)
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
True
)
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
def
test_update_dense_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
)
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
True
)
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
def
test_update_sparse_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
)
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
True
)
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
def
test_update_dense_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
)
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
True
)
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py
浏览文件 @
183377f4
...
...
@@ -18,6 +18,7 @@ import paddle.fluid as fluid
import
unittest
import
numpy
as
np
import
paddle
import
os
def
Lenet
(
data
,
class_dim
):
...
...
@@ -35,7 +36,7 @@ def Lenet(data, class_dim):
class
TestFetchOp
(
unittest
.
TestCase
):
def
parallel_exe
(
self
,
train_inputs
,
seed
):
def
parallel_exe
(
self
,
train_inputs
,
seed
,
use_cuda
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
startup
.
random_seed
=
seed
...
...
@@ -59,13 +60,13 @@ class TestFetchOp(unittest.TestCase):
# conv2d_1.b_0@GRAD. Those variables should not be pruned.
# fluid.memory_optimize(main)
place
=
fluid
.
CUDAPlace
(
0
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
data
,
label
])
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
loss
.
name
,
main_program
=
main
)
use_cuda
=
use_cuda
,
loss_name
=
loss
.
name
,
main_program
=
main
)
fetch_list
=
[]
all_vars
=
main
.
global_block
().
vars
...
...
@@ -88,14 +89,16 @@ class TestFetchOp(unittest.TestCase):
for
i
in
range
(
iters
):
train_inputs
.
append
(
tst_reader_iter
.
next
())
self
.
parallel_exe
(
train_inputs
,
seed
=
1
)
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
self
.
parallel_exe
(
train_inputs
,
seed
=
1
,
use_cuda
=
True
)
self
.
parallel_exe
(
train_inputs
,
seed
=
1
,
use_cuda
=
False
)
class
TestFeedParallel
(
unittest
.
TestCase
):
def
test_main
(
self
):
def
parallel_exe
(
self
,
use_cuda
,
seed
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
startup
.
random_seed
=
1
startup
.
random_seed
=
seed
with
fluid
.
scope_guard
(
fluid
.
core
.
Scope
()):
with
fluid
.
program_guard
(
main
,
startup
):
data
=
fluid
.
layers
.
data
(
...
...
@@ -111,15 +114,18 @@ class TestFeedParallel(unittest.TestCase):
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
opt
.
minimize
(
loss
)
place
=
fluid
.
CUDAPlace
(
0
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
data
,
label
])
reader
=
feeder
.
decorate_reader
(
paddle
.
batch
(
flowers
.
train
(),
batch_size
=
16
),
multi_devices
=
True
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
loss
.
name
,
main_program
=
main
)
use_cuda
=
use_cuda
,
loss_name
=
loss
.
name
,
main_program
=
main
)
for
batch_id
,
data
in
enumerate
(
reader
()):
loss_np
=
np
.
array
(
pe
.
run
(
feed
=
data
,
fetch_list
=
[
loss
.
name
])[
0
])
...
...
@@ -127,6 +133,11 @@ class TestFeedParallel(unittest.TestCase):
if
batch_id
==
2
:
break
def
test_feed_op
(
self
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
self
.
parallel_exe
(
use_cuda
=
True
,
seed
=
1
)
self
.
parallel_exe
(
use_cuda
=
False
,
seed
=
1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
浏览文件 @
183377f4
...
...
@@ -18,6 +18,7 @@ import numpy as np
import
paddle
import
paddle.dataset.mnist
as
mnist
import
unittest
import
os
MNIST_RECORDIO_FILE
=
"./mnist_test_pe.recordio"
...
...
@@ -85,6 +86,7 @@ def fc_with_batchnorm(use_feed):
class
TestMNIST
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
# Convert mnist to recordio file
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
reader
=
paddle
.
batch
(
mnist
.
train
(),
batch_size
=
4
)
...
...
@@ -99,9 +101,12 @@ class TestMNIST(TestParallelExecutorBase):
fluid
.
recordio_writer
.
convert_reader_to_recordio_file
(
MNIST_RECORDIO_FILE
,
reader
,
feeder
)
def
check_simple_fc_convergence
(
self
,
balance_parameter_opt_between_cards
):
self
.
check_network_convergence
(
simple_fc_net
)
self
.
check_network_convergence
(
simple_fc_net
,
allow_op_delay
=
True
)
def
check_simple_fc_convergence
(
self
,
balance_parameter_opt_between_cards
,
use_cuda
=
True
):
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
)
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
,
allow_op_delay
=
True
)
img
=
np
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
...
...
@@ -109,17 +114,21 @@ class TestMNIST(TestParallelExecutorBase):
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
def
test_simple_fc
(
self
):
self
.
check_simple_fc_convergence
(
False
)
self
.
check_simple_fc_convergence
(
False
,
use_cuda
=
True
)
self
.
check_simple_fc_convergence
(
False
,
use_cuda
=
False
)
def
test_simple_fc_with_new_strategy
(
self
):
self
.
check_simple_fc_convergence
(
True
)
self
.
check_simple_fc_convergence
(
True
,
use_cuda
=
True
)
self
.
check_simple_fc_convergence
(
True
,
use_cuda
=
False
)
def
check_simple_fc_parallel_accuracy
(
self
,
balance_parameter_opt_between_cards
):
balance_parameter_opt_between_cards
,
use_cuda
=
True
):
img
=
np
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
single_first_loss
,
single_last_loss
=
self
.
check_network_convergence
(
...
...
@@ -127,12 +136,14 @@ class TestMNIST(TestParallelExecutorBase):
seed
=
1000
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_parallel_executor
=
False
)
parallel_first_loss
,
parallel_last_loss
=
self
.
check_network_convergence
(
method
=
simple_fc_net
,
seed
=
1000
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_parallel_executor
=
True
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
...
...
@@ -143,28 +154,33 @@ class TestMNIST(TestParallelExecutorBase):
self
.
assertAlmostEquals
(
p_l
,
single_last_loss
[
0
],
delta
=
1e-6
)
def
test_simple_fc_parallel_accuracy
(
self
):
self
.
check_simple_fc_parallel_accuracy
(
False
)
self
.
check_simple_fc_parallel_accuracy
(
False
,
use_cuda
=
True
)
self
.
check_simple_fc_parallel_accuracy
(
False
,
use_cuda
=
False
)
def
test_simple_fc_parallel_accuracy_with_new_strategy
(
self
):
self
.
check_simple_fc_parallel_accuracy
(
True
)
self
.
check_simple_fc_parallel_accuracy
(
True
,
use_cuda
=
True
)
self
.
check_simple_fc_parallel_accuracy
(
True
,
use_cuda
=
False
)
def
check_batchnorm_fc_convergence
(
self
,
balance_parameter_opt_between_cards
):
self
.
check_network_convergence
(
fc_with_batchnorm
)
def
check_batchnorm_fc_convergence
(
self
,
balance_parameter_opt_between_cards
,
use_cuda
):
self
.
check_network_convergence
(
fc_with_batchnorm
,
use_cuda
=
use_cuda
)
img
=
np
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
self
.
check_network_convergence
(
fc_with_batchnorm
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
def
test_batchnorm_fc
(
self
):
self
.
check_batchnorm_fc_convergence
(
False
)
self
.
check_batchnorm_fc_convergence
(
False
,
use_cuda
=
True
)
self
.
check_batchnorm_fc_convergence
(
False
,
use_cuda
=
False
)
def
test_batchnorm_fc_with_new_strategy
(
self
):
self
.
check_batchnorm_fc_convergence
(
True
)
self
.
check_batchnorm_fc_convergence
(
True
,
use_cuda
=
True
)
self
.
check_batchnorm_fc_convergence
(
True
,
use_cuda
=
False
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py
浏览文件 @
183377f4
...
...
@@ -15,6 +15,7 @@
import
paddle.fluid
as
fluid
from
parallel_executor_test_base
import
TestParallelExecutorBase
import
unittest
import
os
def
squeeze_excitation
(
input
,
num_channels
,
reduction_ratio
):
...
...
@@ -130,22 +131,30 @@ def SE_ResNeXt50Small(batch_size=2, use_feed=False):
class
TestResnet
(
TestParallelExecutorBase
):
def
check_resnet_convergence
(
self
,
balance_parameter_opt_between_cards
):
def
check_resnet_convergence
(
self
,
balance_parameter_opt_between_cards
,
use_cuda
=
True
,
iter
=
20
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
import
functools
batch_size
=
2
self
.
check_network_convergence
(
functools
.
partial
(
SE_ResNeXt50Small
,
batch_size
=
batch_size
),
iter
=
20
,
iter
=
iter
,
batch_size
=
batch_size
,
use_cuda
=
use_cuda
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
def
test_resnet
(
self
):
self
.
check_resnet_convergence
(
False
)
self
.
check_resnet_convergence
(
False
,
use_cuda
=
True
)
self
.
check_resnet_convergence
(
False
,
use_cuda
=
False
,
iter
=
5
)
def
test_resnet_with_new_strategy
(
self
):
self
.
check_resnet_convergence
(
True
)
self
.
check_resnet_convergence
(
True
,
use_cuda
=
True
)
self
.
check_resnet_convergence
(
True
,
use_cuda
=
False
,
iter
=
5
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_test_while_train.py
浏览文件 @
183377f4
...
...
@@ -15,6 +15,7 @@
import
paddle.fluid
as
fluid
import
numpy
as
np
import
unittest
import
os
def
simple_fc_net
():
...
...
@@ -35,7 +36,8 @@ def simple_fc_net():
class
ParallelExecutorTestingDuringTraining
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
build_strategy
=
None
):
def
check_network_convergence
(
self
,
use_cuda
,
build_strategy
=
None
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -49,19 +51,19 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
image
=
np
.
random
.
normal
(
size
=
(
batch_size
,
784
)).
astype
(
'float32'
)
label
=
np
.
random
.
randint
(
0
,
10
,
(
batch_size
,
1
),
dtype
=
"int64"
)
place
=
fluid
.
CUDAPlace
(
0
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
feed_dict
=
{
'image'
:
image
,
'label'
:
label
}
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
use_cuda
=
use_cuda
,
loss_name
=
loss
.
name
,
main_program
=
main
,
build_strategy
=
build_strategy
)
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
use_cuda
=
use_cuda
,
main_program
=
test_program
,
share_vars_from
=
train_exe
,
build_strategy
=
build_strategy
)
...
...
@@ -81,12 +83,18 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
def
test_parallel_testing
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
self
.
check_network_convergence
(
build_strategy
)
self
.
check_network_convergence
(
use_cuda
=
True
,
build_strategy
=
build_strategy
)
self
.
check_network_convergence
(
use_cuda
=
False
,
build_strategy
=
build_strategy
)
def
test_parallel_testing_with_new_strategy
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
self
.
check_network_convergence
(
build_strategy
)
self
.
check_network_convergence
(
use_cuda
=
True
,
build_strategy
=
build_strategy
)
self
.
check_network_convergence
(
use_cuda
=
False
,
build_strategy
=
build_strategy
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py
浏览文件 @
183377f4
...
...
@@ -19,6 +19,7 @@ from parallel_executor_test_base import TestParallelExecutorBase
import
unittest
import
paddle
import
paddle.dataset.wmt16
as
wmt16
import
os
WMT16_RECORDIO_FILE
=
"./wmt16_test_pe.recordio"
...
...
@@ -149,6 +150,7 @@ def transformer(use_feed):
class
TestTransformer
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
reader
=
paddle
.
batch
(
wmt16
.
train
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
...
...
@@ -167,7 +169,8 @@ class TestTransformer(TestParallelExecutorBase):
@
unittest
.
skip
(
"transformer is buggy in multi gpu"
)
def
test_main
(
self
):
self
.
check_network_convergence
(
transformer
)
self
.
check_network_convergence
(
transformer
,
use_cuda
=
True
)
self
.
check_network_convergence
(
transformer
,
use_cuda
=
False
)
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/dataset/flowers.py
浏览文件 @
183377f4
...
...
@@ -119,7 +119,8 @@ def reader_creator(data_file,
yield
sample
,
int
(
label
)
-
1
if
use_xmap
:
return
xmap_readers
(
mapper
,
reader
,
cpu_count
(),
buffered_size
)
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
cpu_count
()))
return
xmap_readers
(
mapper
,
reader
,
cpu_num
,
buffered_size
)
else
:
return
map_readers
(
mapper
,
reader
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录