Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
17622b48
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
17622b48
编写于
9月 23, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into r-doc
上级
44c59adb
a2393fc1
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
95 addition
and
61 deletion
+95
-61
paddle/framework/framework.proto
paddle/framework/framework.proto
+1
-1
paddle/framework/lod_tensor.cc
paddle/framework/lod_tensor.cc
+6
-10
paddle/framework/lod_tensor.h
paddle/framework/lod_tensor.h
+4
-4
paddle/framework/lod_tensor_test.cc
paddle/framework/lod_tensor_test.cc
+6
-6
paddle/framework/operator.cc
paddle/framework/operator.cc
+2
-2
paddle/framework/tensor.h
paddle/framework/tensor.h
+5
-8
paddle/framework/tensor_impl.h
paddle/framework/tensor_impl.h
+1
-2
paddle/operators/elementwise_add_op.h
paddle/operators/elementwise_add_op.h
+2
-0
paddle/operators/elementwise_div_op.h
paddle/operators/elementwise_div_op.h
+2
-0
paddle/operators/elementwise_sub_op.h
paddle/operators/elementwise_sub_op.h
+1
-0
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+6
-7
paddle/operators/recurrent_op.h
paddle/operators/recurrent_op.h
+4
-1
paddle/operators/rnn/recurrent_op_utils.cc
paddle/operators/rnn/recurrent_op_utils.cc
+5
-6
paddle/operators/rnn/recurrent_op_utils.h
paddle/operators/rnn/recurrent_op_utils.h
+1
-1
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+9
-10
paddle/pybind/tensor_py.h
paddle/pybind/tensor_py.h
+1
-1
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+39
-2
未找到文件。
paddle/framework/framework.proto
浏览文件 @
17622b48
...
...
@@ -106,7 +106,7 @@ enum DataType {
message
LoDTensorDesc
{
required
DataType
data_type
=
1
;
repeated
int
32
dims
=
2
;
// [UNK, 640, 480] is saved as [-1, 640, 480]
repeated
int
64
dims
=
2
;
// [UNK, 640, 480] is saved as [-1, 640, 480]
optional
int32
lod_level
=
3
[
default
=
0
];
}
...
...
paddle/framework/lod_tensor.cc
浏览文件 @
17622b48
...
...
@@ -72,20 +72,16 @@ bool operator==(const LoD& a, const LoD& b) {
return
true
;
}
void
LoDTensor
::
S
lice
Levels
(
size_t
level_begin
,
size_t
level_end
)
{
void
LoDTensor
::
S
hrink
Levels
(
size_t
level_begin
,
size_t
level_end
)
{
auto
new_lod
=
framework
::
SliceLevels
(
lod_
,
level_begin
,
level_end
);
lod_
=
new_lod
;
}
void
LoDTensor
::
SliceInLevel
(
size_t
level
,
size_t
elem_begin
,
size_t
elem_end
)
{
PADDLE_ENFORCE
(
level
<
NumLevels
(),
"level [%d] out of range [%d]"
,
level
,
NumLevels
());
PADDLE_ENFORCE
(
elem_begin
<
NumElements
(
level
),
"element begin [%d] out of range [%d]"
,
elem_begin
,
NumElements
(
level
));
PADDLE_ENFORCE
(
elem_end
<
NumElements
(
level
)
+
1
,
"element end [%d] out of range [%d]"
,
elem_end
,
NumElements
(
level
));
void
LoDTensor
::
ShrinkInLevel
(
size_t
level
,
size_t
elem_begin
,
size_t
elem_end
)
{
PADDLE_ENFORCE_LT
(
level
,
NumLevels
());
PADDLE_ENFORCE_LT
(
elem_begin
,
NumElements
(
level
));
PADDLE_ENFORCE_LT
(
elem_end
,
NumElements
(
level
)
+
1
);
auto
new_lod
=
framework
::
SliceInLevel
(
lod_
,
level
,
elem_begin
,
elem_end
);
lod_
=
new_lod
;
...
...
paddle/framework/lod_tensor.h
浏览文件 @
17622b48
...
...
@@ -89,15 +89,15 @@ class LoDTensor : public Tensor {
}
/*
* S
lice of
levels[level_begin:level_end]
* S
hrink
levels[level_begin:level_end]
*/
void
S
lice
Levels
(
size_t
level_begin
,
size_t
level_end
);
void
S
hrink
Levels
(
size_t
level_begin
,
size_t
level_end
);
/*
* S
lice of
elements of a level, [elem_begin: elem_end]
* S
hrink
elements of a level, [elem_begin: elem_end]
* @note: low performance in slice lod_.
*/
void
S
lice
InLevel
(
size_t
level
,
size_t
elem_begin
,
size_t
elem_end
);
void
S
hrink
InLevel
(
size_t
level
,
size_t
elem_begin
,
size_t
elem_end
);
private:
LoD
lod_
;
...
...
paddle/framework/lod_tensor_test.cc
浏览文件 @
17622b48
...
...
@@ -56,11 +56,11 @@ TEST_F(LoDTensorTester, NumElements) {
ASSERT_EQ
(
lod_tensor_
.
NumElements
(
2
),
8UL
);
}
TEST_F
(
LoDTensorTester
,
S
lice
Levels
)
{
TEST_F
(
LoDTensorTester
,
S
hrink
Levels
)
{
// slice 1 level
for
(
size_t
level
=
0
;
level
<
3UL
;
++
level
)
{
LoDTensor
new_lod_tensor
=
lod_tensor_
;
new_lod_tensor
.
S
lice
Levels
(
level
,
level
+
1
);
new_lod_tensor
.
S
hrink
Levels
(
level
,
level
+
1
);
ASSERT_EQ
(
new_lod_tensor
.
NumLevels
(),
1UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
lod_tensor_
.
NumElements
(
level
));
ASSERT_EQ
(
new_lod_tensor
.
data
<
float
>
(),
lod_tensor_
.
data
<
float
>
());
...
...
@@ -68,7 +68,7 @@ TEST_F(LoDTensorTester, SliceLevels) {
// slice 2 level
for
(
size_t
level
=
0
;
level
<
2UL
;
++
level
)
{
LoDTensor
new_lod_tensor
=
lod_tensor_
;
new_lod_tensor
.
S
lice
Levels
(
level
,
level
+
2
);
new_lod_tensor
.
S
hrink
Levels
(
level
,
level
+
2
);
ASSERT_EQ
(
new_lod_tensor
.
NumLevels
(),
2UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
lod_tensor_
.
NumElements
(
level
));
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
1
),
...
...
@@ -77,10 +77,10 @@ TEST_F(LoDTensorTester, SliceLevels) {
}
}
TEST_F
(
LoDTensorTester
,
S
lice
InLevel
)
{
TEST_F
(
LoDTensorTester
,
S
hrink
InLevel
)
{
size_t
level
=
0
;
LoDTensor
new_lod_tensor
=
lod_tensor_
;
new_lod_tensor
.
S
lice
InLevel
(
level
,
0
,
2
);
new_lod_tensor
.
S
hrink
InLevel
(
level
,
0
,
2
);
EXPECT_EQ
(
new_lod_tensor
.
NumLevels
(),
3UL
);
EXPECT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
2UL
);
EXPECT_EQ
(
new_lod_tensor
.
NumElements
(
1
),
4UL
);
...
...
@@ -89,7 +89,7 @@ TEST_F(LoDTensorTester, SliceInLevel) {
level
=
1
;
new_lod_tensor
=
lod_tensor_
;
new_lod_tensor
.
S
lice
InLevel
(
level
,
0
,
2
);
new_lod_tensor
.
S
hrink
InLevel
(
level
,
0
,
2
);
ASSERT_EQ
(
new_lod_tensor
.
NumLevels
(),
2UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
2UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
1
),
4UL
);
...
...
paddle/framework/operator.cc
浏览文件 @
17622b48
...
...
@@ -60,8 +60,8 @@ std::string OperatorBase::Output(const std::string& name) const {
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Outputs
(
const
std
::
string
&
name
)
const
{
auto
it
=
outputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
outputs_
.
end
(),
"Op %s does not have output
%s"
,
type_
,
name
);
PADDLE_ENFORCE
(
it
!=
outputs_
.
end
(),
"Op %s does not have output
called %s"
,
type_
,
name
);
return
it
->
second
;
}
...
...
paddle/framework/tensor.h
浏览文件 @
17622b48
...
...
@@ -29,16 +29,19 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
namespace
pybind
{
namespace
details
{
template
<
bool
less
,
size_t
i
,
typename
...
args
>
struct
CastToPyBufferImpl
;
}
}
// namespace pybind
namespace
framework
{
class
Tensor
{
public:
template
<
bool
less
,
size_t
i
,
typename
...
args
>
friend
struct
details
::
CastToPyBufferImpl
;
friend
struct
pybind
::
details
::
CastToPyBufferImpl
;
template
<
typename
T
,
size_t
D
,
int
MajorType
,
typename
IndexType
>
friend
struct
EigenTensor
;
...
...
@@ -165,12 +168,6 @@ class Tensor {
/*! points to dimensions of memory block. */
DDim
dims_
;
/**
* A cache of the number of elements in a tensor.
* Would be 0 for an uninitialized tensor.
*/
int64_t
numel_
;
/**
* @brief A PlaceHolder may be shared by more than one tensor.
*
...
...
paddle/framework/tensor_impl.h
浏览文件 @
17622b48
...
...
@@ -147,13 +147,12 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
inline
Tensor
&
Tensor
::
Resize
(
const
DDim
&
dims
)
{
dims_
=
dims
;
numel_
=
product
(
dims_
);
return
*
this
;
}
inline
const
DDim
&
Tensor
::
dims
()
const
{
return
dims_
;
}
inline
int64_t
Tensor
::
numel
()
const
{
return
numel_
;
}
inline
int64_t
Tensor
::
numel
()
const
{
return
product
(
dims_
)
;
}
template
<
typename
T
>
inline
Tensor
ReshapeToMatrix
(
const
Tensor
&
src
,
int
num_col_dims
)
{
...
...
paddle/operators/elementwise_add_op.h
浏览文件 @
17622b48
...
...
@@ -12,6 +12,8 @@
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/elementwise_op.h"
namespace
paddle
{
...
...
paddle/operators/elementwise_div_op.h
浏览文件 @
17622b48
...
...
@@ -12,6 +12,8 @@
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/elementwise_op.h"
namespace
paddle
{
...
...
paddle/operators/elementwise_sub_op.h
浏览文件 @
17622b48
...
...
@@ -12,6 +12,7 @@
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/elementwise_op.h"
namespace
paddle
{
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
17622b48
...
...
@@ -80,7 +80,6 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// Now all variables in scope must be created outside of op.
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"stepnet_ op has no outputs"
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"net_op has no outputs"
);
if
(
seq_len_
>
step_scopes
->
size
())
{
for
(
size_t
i
=
step_scopes
->
size
();
i
<
seq_len_
;
++
i
)
{
...
...
@@ -129,8 +128,8 @@ const rnn::ArgumentName RecurrentOp::kArgName{
"memories"
,
"pre_memories"
,
"boot_memories"
};
const
rnn
::
ArgumentName
RecurrentGradientOp
::
kArgName
{
"step_net"
,
"step_scopes
"
,
"outlink@grad"
,
"inlink@grad
"
,
"memories"
,
"pre_memories"
,
"boot_memories@grad
"
};
"step_net"
,
"step_scopes
@GRAD"
,
"outlinks@GRAD"
,
"inlinks@GRAD
"
,
"memories"
,
"pre_memories"
,
"boot_memories@GRAD
"
};
RecurrentOp
::
RecurrentOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
...
...
@@ -226,13 +225,13 @@ RecurrentGradientOp::RecurrentGradientOp(
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{
rnn
::
InitArgument
(
kArgName
,
&
arg_
,
*
this
);
rnn
::
InitArgument
(
kArgName
,
&
arg_
,
*
this
,
true
/*is grad*/
);
alg_
.
Init
(
&
arg_
,
&
stepnet_
);
}
}
// namespace operators
}
// namespace paddle
REGISTER_OP
_WITHOUT_GRADIENT
(
recurrent
,
paddle
::
operators
::
RecurrentOp
,
paddle
::
operators
::
RecurrentAlgorithmProtoAndCheckerMaker
);
REGISTER_OP
(
recurrent
,
paddle
::
operators
::
RecurrentOp
,
paddle
::
operators
::
RecurrentAlgorithmProtoAndCheckerMaker
,
recurrent_grad
,
paddle
::
operators
::
RecurrentGradientOp
);
paddle/operators/recurrent_op.h
浏览文件 @
17622b48
...
...
@@ -22,7 +22,7 @@ namespace paddle {
namespace
operators
{
// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
// TODO(
Yan Chunwei):
// TODO(
Superjom)
// 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory.
...
...
@@ -177,6 +177,9 @@ class RecurrentGradientOp : public framework::OperatorBase {
static
const
rnn
::
ArgumentName
kArgName
;
/*
* set a stepnet that is created according to a RecurrentOp's stepnet.
*/
void
set_stepnet
(
std
::
unique_ptr
<
OperatorBase
>
net
)
{
stepnet_
=
std
::
move
(
net
);
}
...
...
paddle/operators/rnn/recurrent_op_utils.cc
浏览文件 @
17622b48
...
...
@@ -109,15 +109,14 @@ void LinkMemories(const std::vector<Scope*>& scopes,
}
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
framework
::
OperatorBase
&
op
)
{
arg
->
step_scopes
=
op
.
Output
(
name
.
step_scopes
);
const
framework
::
OperatorBase
&
op
,
bool
is_grad
)
{
arg
->
step_scopes
=
is_grad
?
op
.
Input
(
name
.
step_scopes
)
:
op
.
Output
(
name
.
step_scopes
);
arg
->
inlinks
=
op
.
Inputs
(
name
.
inlinks
);
arg
->
outlinks
=
op
.
Outputs
(
name
.
outlinks
);
auto
boot_memories
=
op
.
Inputs
(
name
.
boot_memories
);
auto
boot_memories
=
is_grad
?
op
.
Outputs
(
name
.
boot_memories
)
:
op
.
Inputs
(
name
.
boot_memories
);
// attributes
auto
memories
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
memories
);
auto
pre_memories
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
pre_memories
);
...
...
paddle/operators/rnn/recurrent_op_utils.h
浏览文件 @
17622b48
...
...
@@ -78,7 +78,7 @@ void LinkMemories(const std::vector<Scope*>& step_scopes,
const
int
offset
,
bool
infer_shape_mode
);
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
framework
::
OperatorBase
&
op
);
const
framework
::
OperatorBase
&
op
,
bool
is_grad
=
false
);
}
// namespace rnn
}
// namespace operators
...
...
paddle/pybind/pybind.cc
浏览文件 @
17622b48
...
...
@@ -34,12 +34,7 @@ limitations under the License. */
namespace
py
=
pybind11
;
namespace
paddle
{
namespace
framework
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoD
=
framework
::
LoD
;
namespace
pybind
{
static
size_t
UniqueIntegerGenerator
()
{
static
std
::
atomic
<
size_t
>
generator
;
return
generator
.
fetch_add
(
1
);
...
...
@@ -56,6 +51,10 @@ bool IsCompileGPU() {
PYBIND11_PLUGIN
(
core
)
{
py
::
module
m
(
"core"
,
"C++ core of PaddlePaddle"
);
// using framework in this function. Since it is inside a function, it will
// not cause namespace pollution.
using
namespace
paddle
::
framework
;
// NOLINT
py
::
class_
<
Tensor
>
(
m
,
"Tensor"
,
py
::
buffer_protocol
())
.
def_buffer
(
[](
Tensor
&
self
)
->
py
::
buffer_info
{
return
CastToPyBuffer
(
self
);
})
...
...
@@ -107,7 +106,7 @@ PYBIND11_PLUGIN(core) {
#ifdef PADDLE_ONLY_CPU
new
(
&
instance
)
LoDTensor
(
lod
);
#else
paddle
::
framework
::
LoD
new_lod
;
LoD
new_lod
;
new_lod
.
reserve
(
lod
.
size
());
std
::
copy
(
lod
.
begin
(),
lod
.
end
(),
std
::
back_inserter
(
new_lod
));
new
(
&
instance
)
LoDTensor
(
new_lod
);
...
...
@@ -118,7 +117,7 @@ PYBIND11_PLUGIN(core) {
#ifdef PADDLE_ONLY_CPU
self
.
set_lod
(
lod
);
#else
paddle
::
framework
::
LoD
new_lod
;
LoD
new_lod
;
new_lod
.
reserve
(
lod
.
size
());
std
::
copy
(
lod
.
begin
(),
lod
.
end
(),
std
::
back_inserter
(
new_lod
));
self
.
set_lod
(
new_lod
);
...
...
@@ -132,7 +131,7 @@ PYBIND11_PLUGIN(core) {
std
::
vector
<
std
::
vector
<
size_t
>>
new_lod
;
new_lod
.
reserve
(
lod
.
size
());
std
::
transform
(
lod
.
begin
(),
lod
.
end
(),
std
::
back_inserter
(
new_lod
),
[](
paddle
::
framework
::
Vector
<
size_t
>
item
)
->
[](
Vector
<
size_t
>
item
)
->
std
::
vector
<
size_t
>
{
std
::
vector
<
size_t
>
v
;
v
.
reserve
(
item
.
size
());
...
...
@@ -317,5 +316,5 @@ All parameter, weight, gradient are variables in Paddle.
return
m
.
ptr
();
}
}
// namespace
framework
}
// namespace
pybind
}
// namespace paddle
paddle/pybind/tensor_py.h
浏览文件 @
17622b48
...
...
@@ -23,7 +23,7 @@ namespace py = pybind11;
namespace
paddle
{
namespace
framework
{
namespace
pybind
{
namespace
details
{
...
...
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
17622b48
...
...
@@ -3,6 +3,7 @@ import paddle.v2.framework.core as core
import
unittest
import
numpy
as
np
from
paddle.v2.framework.op
import
Operator
,
RecurrentOp
from
op_test
import
get_numeric_gradient
def
py_sigmoid
(
x
):
...
...
@@ -47,7 +48,7 @@ class PySimpleRNN(object):
else
:
pre_mem
=
self
.
h_boot
xW
=
np
.
matmul
(
x
,
self
.
W
)
hU
=
np
.
matmul
(
mem
,
self
.
U
)
hU
=
np
.
matmul
(
pre_
mem
,
self
.
U
)
sum
=
xW
+
hU
self
.
mems
[
step_id
]
=
py_sigmoid
(
sum
)
...
...
@@ -68,7 +69,7 @@ def create_tensor(scope, name, shape, np_data):
return
tensor
class
TestRecurrentOp
(
unittest
.
TestCase
):
class
RecurrentOpTest
(
unittest
.
TestCase
):
'''
Test RNNOp
...
...
@@ -158,6 +159,42 @@ class TestRecurrentOp(unittest.TestCase):
print
print
'py_output'
,
py_output
self
.
assertEqual
(
pd_output
.
shape
,
py_output
.
shape
)
self
.
assertTrue
(
np
.
isclose
(
pd_output
,
py_output
,
rtol
=
0.1
).
all
())
class
RecurrentGradientOpTest
(
unittest
.
TestCase
):
def
create_forward_op
(
self
):
self
.
forward_op
=
RecurrentOp
(
# inputs
inlinks
=
[
"x"
],
boot_memories
=
[
"h_boot"
],
step_net
=
"stepnet"
,
# outputs
outlinks
=
[
"h"
],
step_scopes
=
"step_scopes"
,
# attributes
pre_memories
=
[
"h@pre"
],
memories
=
[
"h@alias"
])
# create a stepnet for RNN
stepnet
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x@alias"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"add"
,
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@alias"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
stepnet
.
append_op
(
op
)
stepnet
.
complete_add_op
(
True
)
self
.
forward_op
.
set_stepnet
(
stepnet
)
def
create_gradient_op
(
self
):
a
=
set
()
backward_op
=
core
.
RecurrentOp
.
backward
(
self
.
forward_op
,
a
)
def
test_grad
(
self
):
self
.
create_forward_op
()
self
.
create_gradient_op
()
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录