Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
163c6a9e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
163c6a9e
编写于
1月 13, 2023
作者:
W
wuhuachaocoding
提交者:
GitHub
1月 13, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update reader in sharding unit test. (#49652)
上级
a000e9b8
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
160 addition
and
161 deletion
+160
-161
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_dist_save_load.py
...ests/unittests/collective/fleet/dygraph_dist_save_load.py
+19
-18
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_api.py
...s/unittests/collective/fleet/dygraph_group_sharded_api.py
+19
-18
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_api_eager.py
...tests/collective/fleet/dygraph_group_sharded_api_eager.py
+19
-18
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage2.py
...nittests/collective/fleet/dygraph_group_sharded_stage2.py
+19
-18
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage2_comm_overlap.py
...ective/fleet/dygraph_group_sharded_stage2_comm_overlap.py
+19
-18
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage2_offload.py
.../collective/fleet/dygraph_group_sharded_stage2_offload.py
+9
-16
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage3.py
...nittests/collective/fleet/dygraph_group_sharded_stage3.py
+18
-19
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage3_offload.py
.../collective/fleet/dygraph_group_sharded_stage3_offload.py
+19
-18
python/paddle/fluid/tests/unittests/collective/multinode/mn_dygraph_group_sharded_stage3.py
...s/collective/multinode/mn_dygraph_group_sharded_stage3.py
+19
-18
未找到文件。
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_dist_save_load.py
浏览文件 @
163c6a9e
...
@@ -54,14 +54,18 @@ class MLP(fluid.Layer):
...
@@ -54,14 +54,18 @@ class MLP(fluid.Layer):
return
y
return
y
def
reader_decorator
(
linear_size
=
1000
):
class
RandomDataset
(
paddle
.
io
.
Dataset
):
def
__reader__
():
def
__init__
(
self
,
num_samples
=
2000
,
linear_size
=
1000
):
for
_
in
range
(
100
):
self
.
num_samples
=
num_samples
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
self
.
linear_size
=
linear_size
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
__getitem__
(
self
,
idx
):
img
=
np
.
random
.
rand
(
self
.
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
return
img
,
label
def
__len__
(
self
):
return
self
.
num_samples
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
...
@@ -125,18 +129,15 @@ def train_mlp(
...
@@ -125,18 +129,15 @@ def train_mlp(
)
)
return
return
train_reader
=
paddle
.
batch
(
paddle
.
seed
(
2023
)
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
np
.
random
.
seed
(
2023
)
)
train_loader
=
paddle
.
io
.
DataLoader
(
RandomDataset
(),
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
batch_size
=
batch_size
,
capacity
=
32
,
shuffle
=
False
,
use_double_buffer
=
True
,
drop_last
=
True
,
iterable
=
True
,
num_workers
=
0
,
return_list
=
True
,
use_multiprocess
=
True
,
)
)
train_loader
.
set_sample_list_generator
(
train_reader
)
if
sharding_stage
==
2
:
if
sharding_stage
==
2
:
model
.
to
(
device
=
"gpu"
)
model
.
to
(
device
=
"gpu"
)
...
...
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_api.py
浏览文件 @
163c6a9e
...
@@ -50,14 +50,18 @@ class MLP(fluid.Layer):
...
@@ -50,14 +50,18 @@ class MLP(fluid.Layer):
return
y
return
y
def
reader_decorator
(
linear_size
=
1000
):
class
RandomDataset
(
paddle
.
io
.
Dataset
):
def
__reader__
():
def
__init__
(
self
,
num_samples
=
2000
,
linear_size
=
1000
):
for
_
in
range
(
100
):
self
.
num_samples
=
num_samples
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
self
.
linear_size
=
linear_size
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
__getitem__
(
self
,
idx
):
img
=
np
.
random
.
rand
(
self
.
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
return
img
,
label
def
__len__
(
self
):
return
self
.
num_samples
def
optimizer_setting
(
model
,
use_multi_precision
,
opt_group
=
False
):
def
optimizer_setting
(
model
,
use_multi_precision
,
opt_group
=
False
):
...
@@ -92,18 +96,15 @@ def train_mlp(
...
@@ -92,18 +96,15 @@ def train_mlp(
model
=
model
,
optimizer
=
optimizer
,
level
=
shard_level
,
scaler
=
scaler
model
=
model
,
optimizer
=
optimizer
,
level
=
shard_level
,
scaler
=
scaler
)
)
train_reader
=
paddle
.
batch
(
paddle
.
seed
(
2023
)
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
np
.
random
.
seed
(
2023
)
)
train_loader
=
paddle
.
io
.
DataLoader
(
RandomDataset
(),
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
batch_size
=
batch_size
,
capacity
=
32
,
shuffle
=
False
,
use_double_buffer
=
True
,
drop_last
=
True
,
iterable
=
True
,
num_workers
=
0
,
return_list
=
True
,
use_multiprocess
=
True
,
)
)
train_loader
.
set_sample_list_generator
(
train_reader
)
for
eop
in
range
(
epoch
):
for
eop
in
range
(
epoch
):
model
.
train
()
model
.
train
()
...
...
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_api_eager.py
浏览文件 @
163c6a9e
...
@@ -48,14 +48,18 @@ class MLP(fluid.Layer):
...
@@ -48,14 +48,18 @@ class MLP(fluid.Layer):
return
y
return
y
def
reader_decorator
(
linear_size
=
1000
):
class
RandomDataset
(
paddle
.
io
.
Dataset
):
def
__reader__
():
def
__init__
(
self
,
num_samples
=
2000
,
linear_size
=
1000
):
for
_
in
range
(
100
):
self
.
num_samples
=
num_samples
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
self
.
linear_size
=
linear_size
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
__getitem__
(
self
,
idx
):
img
=
np
.
random
.
rand
(
self
.
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
return
img
,
label
def
__len__
(
self
):
return
self
.
num_samples
def
optimizer_setting
(
model
,
use_multi_precision
,
opt_group
=
False
):
def
optimizer_setting
(
model
,
use_multi_precision
,
opt_group
=
False
):
...
@@ -103,18 +107,15 @@ def train_mlp(
...
@@ -103,18 +107,15 @@ def train_mlp(
if
shard_level
==
"os_g"
:
if
shard_level
==
"os_g"
:
optimizer
.
set_lr
(
optimizer
.
get_lr
())
optimizer
.
set_lr
(
optimizer
.
get_lr
())
train_reader
=
paddle
.
batch
(
paddle
.
seed
(
2023
)
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
np
.
random
.
seed
(
2023
)
)
train_loader
=
paddle
.
io
.
DataLoader
(
RandomDataset
(),
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
batch_size
=
batch_size
,
capacity
=
32
,
shuffle
=
False
,
use_double_buffer
=
True
,
drop_last
=
True
,
iterable
=
True
,
num_workers
=
0
,
return_list
=
True
,
use_multiprocess
=
True
,
)
)
train_loader
.
set_sample_list_generator
(
train_reader
)
for
eop
in
range
(
epoch
):
for
eop
in
range
(
epoch
):
model
.
train
()
model
.
train
()
...
...
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage2.py
浏览文件 @
163c6a9e
...
@@ -53,14 +53,18 @@ class MLP(fluid.Layer):
...
@@ -53,14 +53,18 @@ class MLP(fluid.Layer):
return
y
return
y
def
reader_decorator
(
linear_size
=
1000
):
class
RandomDataset
(
paddle
.
io
.
Dataset
):
def
__reader__
():
def
__init__
(
self
,
num_samples
=
2000
,
linear_size
=
1000
):
for
_
in
range
(
100
):
self
.
num_samples
=
num_samples
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
self
.
linear_size
=
linear_size
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
__getitem__
(
self
,
idx
):
img
=
np
.
random
.
rand
(
self
.
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
return
img
,
label
def
__len__
(
self
):
return
self
.
num_samples
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
...
@@ -122,18 +126,15 @@ def train_mlp(
...
@@ -122,18 +126,15 @@ def train_mlp(
)
)
return
return
train_reader
=
paddle
.
batch
(
paddle
.
seed
(
2023
)
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
np
.
random
.
seed
(
2023
)
)
train_loader
=
paddle
.
io
.
DataLoader
(
RandomDataset
(),
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
batch_size
=
batch_size
,
capacity
=
32
,
shuffle
=
False
,
use_double_buffer
=
True
,
drop_last
=
True
,
iterable
=
True
,
num_workers
=
0
,
return_list
=
True
,
use_multiprocess
=
True
,
)
)
train_loader
.
set_sample_list_generator
(
train_reader
)
if
sharding_stage
==
2
:
if
sharding_stage
==
2
:
model
.
to
(
device
=
"gpu"
)
model
.
to
(
device
=
"gpu"
)
...
...
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage2_comm_overlap.py
浏览文件 @
163c6a9e
...
@@ -53,14 +53,18 @@ class MLP(fluid.Layer):
...
@@ -53,14 +53,18 @@ class MLP(fluid.Layer):
return
y
return
y
def
reader_decorator
(
linear_size
=
1000
):
class
RandomDataset
(
paddle
.
io
.
Dataset
):
def
__reader__
():
def
__init__
(
self
,
num_samples
=
2000
,
linear_size
=
1000
):
for
_
in
range
(
100
):
self
.
num_samples
=
num_samples
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
self
.
linear_size
=
linear_size
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
__getitem__
(
self
,
idx
):
img
=
np
.
random
.
rand
(
self
.
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
return
img
,
label
def
__len__
(
self
):
return
self
.
num_samples
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
...
@@ -124,18 +128,15 @@ def train_mlp(
...
@@ -124,18 +128,15 @@ def train_mlp(
)
)
return
return
train_reader
=
paddle
.
batch
(
paddle
.
seed
(
2023
)
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
np
.
random
.
seed
(
2023
)
)
train_loader
=
paddle
.
io
.
DataLoader
(
RandomDataset
(),
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
batch_size
=
batch_size
,
capacity
=
32
,
shuffle
=
False
,
use_double_buffer
=
True
,
drop_last
=
True
,
iterable
=
True
,
num_workers
=
0
,
return_list
=
True
,
use_multiprocess
=
True
,
)
)
train_loader
.
set_sample_list_generator
(
train_reader
)
if
sharding_stage
==
2
:
if
sharding_stage
==
2
:
model
.
to
(
device
=
"gpu"
)
model
.
to
(
device
=
"gpu"
)
...
...
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage2_offload.py
浏览文件 @
163c6a9e
...
@@ -15,11 +15,7 @@
...
@@ -15,11 +15,7 @@
# limitations under the License.
# limitations under the License.
import
numpy
as
np
import
numpy
as
np
from
dygraph_group_sharded_stage2
import
(
from
dygraph_group_sharded_stage2
import
MLP
,
RandomDataset
,
optimizer_setting
MLP
,
optimizer_setting
,
reader_decorator
,
)
import
paddle
import
paddle
from
paddle.distributed.fleet.meta_parallel.sharding.group_sharded_optimizer_stage2
import
(
from
paddle.distributed.fleet.meta_parallel.sharding.group_sharded_optimizer_stage2
import
(
...
@@ -53,18 +49,15 @@ def train_mlp(model, offload=False):
...
@@ -53,18 +49,15 @@ def train_mlp(model, offload=False):
)
)
model
=
GroupShardedStage2
(
model
,
optimizer
,
buffer_max_size
=
2
**
21
)
model
=
GroupShardedStage2
(
model
,
optimizer
,
buffer_max_size
=
2
**
21
)
train_reader
=
paddle
.
batch
(
paddle
.
seed
(
2023
)
reader_decorator
(
linear_size
),
batch_size
=
batch_size
,
drop_last
=
True
np
.
random
.
seed
(
2023
)
)
train_loader
=
paddle
.
io
.
DataLoader
(
RandomDataset
(),
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
batch_size
=
batch_size
,
capacity
=
32
,
shuffle
=
False
,
use_double_buffer
=
True
,
drop_last
=
True
,
iterable
=
True
,
num_workers
=
0
,
return_list
=
True
,
use_multiprocess
=
True
,
)
)
train_loader
.
set_sample_list_generator
(
train_reader
)
for
eop
in
range
(
epoch
):
for
eop
in
range
(
epoch
):
model
.
train
()
model
.
train
()
...
...
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage3.py
浏览文件 @
163c6a9e
...
@@ -44,7 +44,7 @@ l2_decay = 1e-4
...
@@ -44,7 +44,7 @@ l2_decay = 1e-4
class
MLP
(
paddle
.
nn
.
Layer
):
class
MLP
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
linear_size
=
10
00
,
param_attr
=
None
,
bias_attr
=
None
):
def
__init__
(
self
,
linear_size
=
10
24
,
param_attr
=
None
,
bias_attr
=
None
):
super
().
__init__
()
super
().
__init__
()
self
.
_linear1
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear1
=
Linear
(
linear_size
,
linear_size
)
...
@@ -102,14 +102,18 @@ class SpecialModel(paddle.nn.Layer):
...
@@ -102,14 +102,18 @@ class SpecialModel(paddle.nn.Layer):
return
x
return
x
def
reader_decorator
(
linear_size
=
1000
):
class
RandomDataset
(
paddle
.
io
.
Dataset
):
def
__reader__
():
def
__init__
(
self
,
num_samples
=
2000
,
linear_size
=
1024
):
for
_
in
range
(
100
):
self
.
num_samples
=
num_samples
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
self
.
linear_size
=
linear_size
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
__getitem__
(
self
,
idx
):
img
=
np
.
random
.
rand
(
self
.
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
return
img
,
label
def
__len__
(
self
):
return
self
.
num_samples
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
...
@@ -181,21 +185,16 @@ def train_mlp(
...
@@ -181,21 +185,16 @@ def train_mlp(
)
)
return
return
train_reader
=
paddle
.
batch
(
paddle
.
seed
(
2023
)
reader_decorator
(
linear_size
=
linear_size
),
np
.
random
.
seed
(
2023
)
train_loader
=
paddle
.
io
.
DataLoader
(
RandomDataset
(),
batch_size
=
batch_size
,
batch_size
=
batch_size
,
shuffle
=
False
,
drop_last
=
True
,
drop_last
=
True
,
num_workers
=
0
,
)
)
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
capacity
=
32
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
,
use_multiprocess
=
True
,
)
train_loader
.
set_sample_list_generator
(
train_reader
)
for
eop
in
range
(
epoch
):
for
eop
in
range
(
epoch
):
model
.
train
()
model
.
train
()
for
batch_id
,
data
in
enumerate
(
train_loader
()):
for
batch_id
,
data
in
enumerate
(
train_loader
()):
...
...
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage3_offload.py
浏览文件 @
163c6a9e
...
@@ -52,14 +52,18 @@ class MLP(fluid.Layer):
...
@@ -52,14 +52,18 @@ class MLP(fluid.Layer):
return
y
return
y
def
reader_decorator
(
linear_size
=
1000
):
class
RandomDataset
(
paddle
.
io
.
Dataset
):
def
__reader__
():
def
__init__
(
self
,
num_samples
=
2000
,
linear_size
=
1000
):
for
_
in
range
(
100
):
self
.
num_samples
=
num_samples
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
self
.
linear_size
=
linear_size
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
__getitem__
(
self
,
idx
):
img
=
np
.
random
.
rand
(
self
.
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
return
img
,
label
def
__len__
(
self
):
return
self
.
num_samples
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
...
@@ -103,18 +107,15 @@ def train_mlp(
...
@@ -103,18 +107,15 @@ def train_mlp(
segment_size
=
2
**
15
,
segment_size
=
2
**
15
,
)
)
train_reader
=
paddle
.
batch
(
paddle
.
seed
(
2023
)
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
np
.
random
.
seed
(
2023
)
)
train_loader
=
paddle
.
io
.
DataLoader
(
RandomDataset
(),
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
batch_size
=
batch_size
,
capacity
=
32
,
shuffle
=
False
,
use_double_buffer
=
True
,
drop_last
=
True
,
iterable
=
True
,
num_workers
=
0
,
return_list
=
True
,
use_multiprocess
=
True
,
)
)
train_loader
.
set_sample_list_generator
(
train_reader
)
for
eop
in
range
(
epoch
):
for
eop
in
range
(
epoch
):
model
.
train
()
model
.
train
()
...
...
python/paddle/fluid/tests/unittests/collective/multinode/mn_dygraph_group_sharded_stage3.py
浏览文件 @
163c6a9e
...
@@ -63,14 +63,18 @@ class MLP(fluid.Layer):
...
@@ -63,14 +63,18 @@ class MLP(fluid.Layer):
return
y
return
y
def
reader_decorator
(
linear_size
=
1000
):
class
RandomDataset
(
paddle
.
io
.
Dataset
):
def
__reader__
():
def
__init__
(
self
,
num_samples
=
2000
,
linear_size
=
1000
):
for
_
in
range
(
100
):
self
.
num_samples
=
num_samples
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
self
.
linear_size
=
linear_size
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
__getitem__
(
self
,
idx
):
img
=
np
.
random
.
rand
(
self
.
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
return
img
,
label
def
__len__
(
self
):
return
self
.
num_samples
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
...
@@ -141,18 +145,15 @@ def train_mlp(
...
@@ -141,18 +145,15 @@ def train_mlp(
)
)
return
return
train_reader
=
paddle
.
batch
(
paddle
.
seed
(
2023
)
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
np
.
random
.
seed
(
2023
)
)
train_loader
=
paddle
.
io
.
DataLoader
(
RandomDataset
(),
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
batch_size
=
batch_size
,
capacity
=
32
,
shuffle
=
False
,
use_double_buffer
=
True
,
drop_last
=
True
,
iterable
=
True
,
num_workers
=
0
,
return_list
=
True
,
use_multiprocess
=
True
,
)
)
train_loader
.
set_sample_list_generator
(
train_reader
)
for
eop
in
range
(
epoch
):
for
eop
in
range
(
epoch
):
model
.
train
()
model
.
train
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录