Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
163b5e57
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
163b5e57
编写于
7月 03, 2018
作者:
X
Xin Pan
提交者:
GitHub
7月 03, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11805 from guoshengCS/cherry-pick-beam-search
[cherry-pick] Fix and enhance beam_search_op and beam_searc_decode_op
上级
9470a340
8a8df06b
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
545 addition
and
507 deletion
+545
-507
paddle/fluid/operators/beam_search_decode_op.cc
paddle/fluid/operators/beam_search_decode_op.cc
+58
-26
paddle/fluid/operators/beam_search_decode_op.h
paddle/fluid/operators/beam_search_decode_op.h
+101
-168
paddle/fluid/operators/beam_search_decode_op_test.cc
paddle/fluid/operators/beam_search_decode_op_test.cc
+28
-120
paddle/fluid/operators/beam_search_op.cc
paddle/fluid/operators/beam_search_op.cc
+90
-47
paddle/fluid/operators/beam_search_op.h
paddle/fluid/operators/beam_search_op.h
+27
-19
paddle/fluid/operators/beam_search_op_test.cc
paddle/fluid/operators/beam_search_op_test.cc
+10
-5
paddle/fluid/operators/tensor_array_read_write_op.cc
paddle/fluid/operators/tensor_array_read_write_op.cc
+2
-3
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+123
-71
python/paddle/fluid/tests/book/high-level-api/machine_translation/test_machine_translation.py
...level-api/machine_translation/test_machine_translation.py
+18
-4
python/paddle/fluid/tests/book/test_machine_translation.py
python/paddle/fluid/tests/book/test_machine_translation.py
+18
-4
python/paddle/fluid/tests/unittests/test_beam_search_decode_op.py
...addle/fluid/tests/unittests/test_beam_search_decode_op.py
+47
-33
python/paddle/fluid/tests/unittests/test_beam_search_op.py
python/paddle/fluid/tests/unittests/test_beam_search_op.py
+23
-7
未找到文件。
paddle/fluid/operators/beam_search_decode_op.cc
浏览文件 @
163b5e57
...
...
@@ -12,8 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include
"paddle/fluid/operators/beam_search_decode_op.h"
#include
<algorithm>
#include <string>
#include "paddle/fluid/operators/beam_search_decode_op.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
...
...
@@ -22,8 +24,11 @@ namespace operators {
struct
BeamSearchDecodeFunctor
{
BeamSearchDecodeFunctor
(
const
LoDTensorArray
&
step_ids
,
const
LoDTensorArray
&
step_scores
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
)
:
step_ids_origin_
(
step_ids
),
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
,
size_t
beam_size
,
int
end_id
)
:
beam_size_
(
beam_size
),
end_id_
(
end_id
),
step_ids_origin_
(
step_ids
),
step_scores_origin_
(
step_scores
),
id_tensor_
(
id_tensor
),
score_tensor_
(
score_tensor
)
{
...
...
@@ -37,9 +42,11 @@ struct BeamSearchDecodeFunctor {
// Copy all tensors in the input tensor array
for
(
auto
&
step_id
:
step_ids_origin_
)
{
framework
::
LoDTensor
out
;
dev_ctx
->
Wait
();
framework
::
TensorCopy
(
step_id
,
platform
::
CPUPlace
(),
*
dev_ctx
,
&
out
);
dev_ctx
->
Wait
();
if
(
step_id
.
numel
()
>
0
)
{
dev_ctx
->
Wait
();
framework
::
TensorCopy
(
step_id
,
platform
::
CPUPlace
(),
*
dev_ctx
,
&
out
);
dev_ctx
->
Wait
();
}
out
.
set_lod
(
step_id
.
lod
());
step_ids_
.
push_back
(
out
);
...
...
@@ -53,9 +60,12 @@ struct BeamSearchDecodeFunctor {
// Copy all tensors in the input tensor array
for
(
auto
&
step_score
:
step_scores_origin_
)
{
framework
::
LoDTensor
out
;
dev_ctx
->
Wait
();
framework
::
TensorCopy
(
step_score
,
platform
::
CPUPlace
(),
*
dev_ctx
,
&
out
);
dev_ctx
->
Wait
();
if
(
step_score
.
numel
()
>
0
)
{
dev_ctx
->
Wait
();
framework
::
TensorCopy
(
step_score
,
platform
::
CPUPlace
(),
*
dev_ctx
,
&
out
);
dev_ctx
->
Wait
();
}
out
.
set_lod
(
step_score
.
lod
());
step_scores_
.
push_back
(
out
);
...
...
@@ -67,6 +77,8 @@ struct BeamSearchDecodeFunctor {
void
operator
()()
const
;
bool
tensor_on_gpu_
;
size_t
beam_size_
;
int
end_id_
;
const
LoDTensorArray
&
step_ids_origin_
;
const
LoDTensorArray
&
step_scores_origin_
;
LoDTensorArray
step_ids_
=
LoDTensorArray
();
...
...
@@ -77,14 +89,14 @@ struct BeamSearchDecodeFunctor {
template
<
typename
T
>
void
BeamSearchDecodeFunctor
::
operator
()()
const
{
BeamSearchDecoder
<
T
>
beam_search_decoder
;
BeamSearchDecoder
<
T
>
beam_search_decoder
(
beam_size_
,
end_id_
)
;
// Check if the tensor is on GPU. If so, use the CPU copy instead
if
(
tensor_on_gpu_
)
{
beam_search_decoder
.
PackAllSteps
(
step_ids_
,
step_scores_
,
id_tensor_
,
score_tensor_
);
beam_search_decoder
.
Backtrace
(
step_ids_
,
step_scores_
,
id_tensor_
,
score_tensor_
);
}
else
{
beam_search_decoder
.
PackAllSteps
(
step_ids_origin_
,
step_scores_origin_
,
id_tensor_
,
score_tensor_
);
beam_search_decoder
.
Backtrace
(
step_ids_origin_
,
step_scores_origin_
,
id_tensor_
,
score_tensor_
);
}
}
...
...
@@ -122,13 +134,17 @@ class BeamSearchDecodeOp : public framework::OperatorBase {
"Level of LodTensor should be 2"
);
}
size_t
beam_size
=
ctx
.
Attr
<
int
>
(
"beam_size"
);
int
end_id
=
ctx
.
Attr
<
int
>
(
"end_id"
);
// prepare output
LoDTensor
*
sentenceIds
=
ctx
.
Output
<
LoDTensor
>
(
"SentenceIds"
);
LoDTensor
*
sentenceScores
=
ctx
.
Output
<
LoDTensor
>
(
"SentenceScores"
);
framework
::
VisitDataType
(
framework
::
ToDataType
(
scores
->
at
(
0
).
type
()),
BeamSearchDecodeFunctor
(
*
ids
,
*
scores
,
sentenceIds
,
sentenceScores
));
BeamSearchDecodeFunctor
(
*
ids
,
*
scores
,
sentenceIds
,
sentenceScores
,
beam_size
,
end_id
));
}
};
...
...
@@ -137,18 +153,32 @@ class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
AddInput
(
"Ids"
,
"(LodTensorArray)"
"
score of the candidate words in each step
"
);
"
The LodTensorArray containing the selected ids of all steps
"
);
AddInput
(
"Scores"
,
"(LodTensorArray)"
"score of the candidate words in each step"
);
AddOutput
(
"SentenceIds"
,
"(LodTensor)"
"All possible result sentences of word ids"
);
AddOutput
(
"SentenceScores"
,
"(LodTensor)"
"All possible result sentences of word scores"
);
"The LodTensorArray containing the selected scores of all steps"
);
AddOutput
(
"SentenceIds"
,
"(LodTensor)"
"An LodTensor containing all generated id sequences for all source "
"sentences"
);
AddOutput
(
"SentenceScores"
,
"(LodTensor)"
"An LodTensor containing scores corresponding to Output(SentenceIds)"
);
AddAttr
<
int
>
(
"beam_size"
,
"beam size for beam search"
);
AddAttr
<
int
>
(
"end_id"
,
"the token id which indicates the end of a sequence"
);
AddComment
(
R"DOC(
Pack the result of Beam search op into SentenceIds and SentenceScores.
Beam Search Decode Operator. This Operator constructs the full hypotheses for
each source sentence by walking back along the LoDTensorArray Input(ids)
whose lods can be used to restore the path in the beam search tree.
The Output(SentenceIds) and Output(SentenceScores) separately contain the
generated id sequences and the corresponding scores. The shapes and lods of the
two LodTensor are same. The lod level is 2 and the two levels separately
indicate how many hypotheses each source sentence has and how many ids each
hypothesis has.
)DOC"
);
}
};
...
...
@@ -172,10 +202,12 @@ class BeamSearchDecodeInferVarType : public framework::VarTypeInference {
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o
:
op_desc
.
Output
(
"SentenceIds"
))
{
block
->
Var
(
o
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
auto
&
sentence_ids
=
block
->
FindRecursiveOrCreateVar
(
o
);
sentence_ids
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
for
(
auto
&
o
:
op_desc
.
Output
(
"SentenceScores"
))
{
block
->
Var
(
o
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
auto
&
sentence_scores
=
block
->
FindRecursiveOrCreateVar
(
o
);
sentence_scores
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
};
...
...
paddle/fluid/operators/beam_search_decode_op.h
浏览文件 @
163b5e57
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -25,42 +27,12 @@ using LoDTensor = framework::LoDTensor;
using
LoDTensorArray
=
framework
::
LoDTensorArray
;
// all the lod have 2 levels.
// The
F
irst is source level, the second is sentence level.
// source level describe how many
candidate words for this source.
//
sentence level describe these candidates belong to which prefix
// The
f
irst is source level, the second is sentence level.
// source level describe how many
prefixes (branchs) for each source sentece
//
(beam). sentence level describe how these candidates belong to the prefixes.
const
size_t
kSourceLevel
=
0
;
const
size_t
kSentenceLevel
=
1
;
template
<
typename
T
>
struct
BeamNode
{
BeamNode
(
int64_t
word_id
,
T
score
)
:
word_id_
(
word_id
),
score_
(
score
)
{}
~
BeamNode
()
{
if
(
parent_
)
{
parent_
->
DropKid
(
this
);
if
(
parent_
->
kids_
.
size
()
==
0UL
)
{
delete
parent_
;
}
}
VLOG
(
3
)
<<
"Delete BeamNode root with word_id:"
<<
this
->
word_id_
;
}
void
AppendTo
(
BeamNode
*
parent
)
{
parent_
=
parent
;
parent
->
kids_
.
insert
(
this
);
}
void
DropKid
(
BeamNode
*
kid
)
{
kids_
.
erase
(
kid
);
}
BeamNode
*
parent_
=
nullptr
;
std
::
unordered_set
<
BeamNode
*>
kids_
;
int64_t
word_id_
;
T
score_
;
};
template
<
typename
T
>
using
BeamNodeVector
=
std
::
vector
<
std
::
unique_ptr
<
BeamNode
<
T
>>>
;
template
<
typename
T
>
struct
Sentence
{
std
::
vector
<
int64_t
>
word_ids
;
...
...
@@ -72,24 +44,8 @@ using SentenceVector = std::vector<Sentence<T>>;
template
<
typename
T
>
struct
BeamSearchDecoder
{
/**
* make a BeamNode and all it's related prefix BeanNode into a Sentence.
*/
Sentence
<
T
>
MakeSentence
(
const
BeamNode
<
T
>*
node
)
const
;
/**
* Param:
* cur_ids: LoDTensor of One step for word ID
* cur_scores: LoDTensor of One Step for word score
* prefixes_list: prefixes for each source sentence.
* sentence_vector_list: result sentence_vector for each source sentence.
* Return:
* a new prefixes list for each source of current step
*/
std
::
vector
<
BeamNodeVector
<
T
>>
PackTwoSteps
(
const
LoDTensor
&
cur_ids
,
const
LoDTensor
&
cur_scores
,
std
::
vector
<
BeamNodeVector
<
T
>>*
prefixes_list
,
std
::
vector
<
SentenceVector
<
T
>>*
sentence_vector_list
)
const
;
BeamSearchDecoder
(
size_t
beam_size
,
int
end_id
)
:
beam_size_
(
beam_size
),
end_id_
(
end_id
)
{}
/**
* convert the result sentence_vector for each source sentence into two
...
...
@@ -100,107 +56,30 @@ struct BeamSearchDecoder {
* sentence_vector_list: sentence_vector for each source sentence.
* id_tensor: result LoDTensor for sentences of id.
* score_tensor: result LoDTensor for sentences of score.
* reverse: whether ids of sentence in sentence_vector_list is reversed
* sort_by_score: whether to sort hypotheses of each sentence by scores.
*/
void
ConvertSentenceVectorToLodTensor
(
std
::
vector
<
SentenceVector
<
T
>>
sentence_vector_list
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
)
const
;
LoDTensor
*
score_tensor
,
bool
reverse
=
true
,
bool
sort_by_score
=
true
)
const
;
/**
* Pack all steps of id/score LodTensor into sentence LoDTensor
* it's main logic is:
* ```python
* prefix
* result_sentence
* result_lod_tensor
*
* for (step in steps):
* prefix = PackTwoSteps(prefix, step, &result_sentence)
* ConvertSentenceVector<T>ToLodTensor(result_sentence, &result_lod_tensor)
* ```
* Gather the hypotheses for each source sentence by backtrace though the
* LoDTensorArray step_ids whose lods reserve the path in the tree.
*/
void
PackAllSteps
(
const
LoDTensorArray
&
step_ids
,
const
LoDTensorArray
&
step_scores
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
)
const
;
};
template
<
typename
T
>
Sentence
<
T
>
BeamSearchDecoder
<
T
>::
MakeSentence
(
const
BeamNode
<
T
>*
node
)
const
{
Sentence
<
T
>
sentence
;
while
(
node
!=
nullptr
)
{
sentence
.
word_ids
.
emplace_back
(
node
->
word_id_
);
sentence
.
scores
.
emplace_back
(
node
->
score_
);
node
=
node
->
parent_
;
}
std
::
reverse
(
std
::
begin
(
sentence
.
word_ids
),
std
::
end
(
sentence
.
word_ids
));
std
::
reverse
(
std
::
begin
(
sentence
.
scores
),
std
::
end
(
sentence
.
scores
));
return
sentence
;
}
template
<
typename
T
>
std
::
vector
<
BeamNodeVector
<
T
>>
BeamSearchDecoder
<
T
>::
PackTwoSteps
(
const
LoDTensor
&
cur_ids
,
const
LoDTensor
&
cur_scores
,
std
::
vector
<
BeamNodeVector
<
T
>>*
prefixes_list
,
std
::
vector
<
SentenceVector
<
T
>>*
sentence_vector_list
)
const
{
std
::
vector
<
BeamNodeVector
<
T
>>
result
;
void
Backtrace
(
const
LoDTensorArray
&
step_ids
,
const
LoDTensorArray
&
step_scores
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
)
const
;
for
(
size_t
src_idx
=
0
;
src_idx
<
cur_ids
.
lod
()[
kSourceLevel
].
size
()
-
1
;
++
src_idx
)
{
size_t
src_start
=
cur_ids
.
lod
().
at
(
kSourceLevel
)[
src_idx
];
size_t
src_end
=
cur_ids
.
lod
().
at
(
kSourceLevel
)[
src_idx
+
1
];
BeamNodeVector
<
T
>
beam_nodes
;
// if prefixes size is 0, it means this is the first step. In this step,
// all candidate id is the start of candidate sentences.
if
(
prefixes_list
->
empty
())
{
PADDLE_ENFORCE_EQ
(
cur_ids
.
lod
().
at
(
kSourceLevel
).
back
(),
cur_ids
.
lod
().
at
(
kSentenceLevel
).
back
(),
"in the first step"
);
for
(
size_t
id_idx
=
src_start
;
id_idx
<
src_end
;
++
id_idx
)
{
beam_nodes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
T
>>
(
new
BeamNode
<
T
>
(
cur_ids
.
data
<
int64_t
>
()[
id_idx
],
cur_scores
.
data
<
T
>
()[
id_idx
])));
}
}
else
{
BeamNodeVector
<
T
>&
prefixes
=
prefixes_list
->
at
(
src_idx
);
SentenceVector
<
T
>&
sentence_vector
=
(
*
sentence_vector_list
)[
src_idx
];
PADDLE_ENFORCE_EQ
(
src_end
-
src_start
,
prefixes
.
size
(),
"prefix and candidate set number should be the same"
);
auto
candidate_offset
=
cur_ids
.
lod
()[
kSentenceLevel
];
for
(
size_t
prefix_idx
=
0
;
prefix_idx
<
prefixes
.
size
();
++
prefix_idx
)
{
std
::
unique_ptr
<
BeamNode
<
T
>>&
prefix
=
prefixes
[
prefix_idx
];
size_t
candidate_start
=
candidate_offset
[
src_start
+
prefix_idx
];
size_t
candidate_end
=
candidate_offset
[
src_start
+
prefix_idx
+
1
];
if
(
candidate_start
==
candidate_end
)
{
VLOG
(
3
)
<<
"this sentence has no more candidate, "
"add to result sentence and rm it from beam tree"
;
sentence_vector
.
push_back
(
MakeSentence
(
prefix
.
get
()));
prefix
.
reset
();
}
else
{
for
(
size_t
candidate_idx
=
candidate_start
;
candidate_idx
<
candidate_end
;
++
candidate_idx
)
{
auto
*
candidate
=
new
BeamNode
<
T
>
(
cur_ids
.
data
<
int64_t
>
()[
candidate_idx
],
cur_scores
.
data
<
T
>
()[
candidate_idx
]);
candidate
->
AppendTo
(
prefix
.
get
());
beam_nodes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
T
>>
(
candidate
));
}
prefix
.
release
();
}
}
}
result
.
push_back
(
std
::
move
(
beam_nodes
));
}
return
result
;
}
size_t
beam_size_
;
int
end_id_
;
};
template
<
typename
T
>
void
BeamSearchDecoder
<
T
>::
ConvertSentenceVectorToLodTensor
(
std
::
vector
<
SentenceVector
<
T
>>
sentence_vector_list
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
)
const
{
LoDTensor
*
score_tensor
,
bool
reverse
,
bool
sort_by_score
)
const
{
size_t
src_num
=
sentence_vector_list
.
size
();
PADDLE_ENFORCE_NE
(
src_num
,
0
,
"src_num should not be 0"
);
...
...
@@ -211,11 +90,29 @@ void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
std
::
vector
<
T
>
score_data
;
for
(
size_t
src_idx
=
0
;
src_idx
<
src_num
;
++
src_idx
)
{
if
(
sort_by_score
)
{
sort
(
sentence_vector_list
[
src_idx
].
begin
(),
sentence_vector_list
[
src_idx
].
end
(),
[
reverse
](
const
Sentence
<
T
>&
a
,
const
Sentence
<
T
>&
b
)
{
if
(
reverse
)
return
a
.
scores
.
front
()
>
b
.
scores
.
front
();
else
return
a
.
scores
.
back
()
>
b
.
scores
.
back
();
});
}
for
(
Sentence
<
T
>&
sentence
:
sentence_vector_list
[
src_idx
])
{
id_data
.
insert
(
id_data
.
end
(),
sentence
.
word_ids
.
begin
(),
sentence
.
word_ids
.
end
());
score_data
.
insert
(
score_data
.
end
(),
sentence
.
scores
.
begin
(),
sentence
.
scores
.
end
());
if
(
reverse
)
{
id_data
.
insert
(
id_data
.
end
(),
sentence
.
word_ids
.
rbegin
(),
sentence
.
word_ids
.
rend
());
score_data
.
insert
(
score_data
.
end
(),
sentence
.
scores
.
rbegin
(),
sentence
.
scores
.
rend
());
}
else
{
id_data
.
insert
(
id_data
.
end
(),
sentence
.
word_ids
.
begin
(),
sentence
.
word_ids
.
end
());
score_data
.
insert
(
score_data
.
end
(),
sentence
.
scores
.
begin
(),
sentence
.
scores
.
end
());
}
sentence_level_lod
.
push_back
(
sentence_level_lod
.
back
()
+
sentence
.
word_ids
.
size
());
}
...
...
@@ -243,39 +140,75 @@ void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
}
template
<
typename
T
>
void
BeamSearchDecoder
<
T
>::
PackAllSteps
(
const
LoDTensorArray
&
step_ids
,
const
LoDTensorArray
&
step_scores
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
)
const
{
void
BeamSearchDecoder
<
T
>::
Backtrace
(
const
LoDTensorArray
&
step_ids
,
const
LoDTensorArray
&
step_scores
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
)
const
{
PADDLE_ENFORCE
(
!
step_ids
.
empty
(),
"step num should be larger than 0"
);
PADDLE_ENFORCE_EQ
(
step_ids
.
size
(),
step_scores
.
size
(),
"step_ids and step_scores should be the same"
);
const
size_t
step_num
=
step_ids
.
size
();
const
size_t
src_num
=
step_ids
.
at
(
0
).
lod
().
at
(
kSourceLevel
).
size
()
-
1
;
std
::
vector
<
SentenceVector
<
T
>>
sentence_vector_list
(
src_num
,
SentenceVector
<
T
>
(
beam_size_
));
std
::
vector
<
std
::
vector
<
size_t
>>
prefix_idx_vector_list
(
src_num
);
for
(
int
step_id
=
step_num
-
1
;
step_id
>=
0
;
--
step_id
)
{
auto
&
cur_ids
=
step_ids
.
at
(
step_id
);
auto
&
cur_scores
=
step_scores
.
at
(
step_id
);
for
(
size_t
src_idx
=
0
;
src_idx
<
src_num
;
++
src_idx
)
{
// for each source sentence
auto
&
sentence_vector
=
sentence_vector_list
.
at
(
src_idx
);
auto
&
prefix_idx_vector
=
prefix_idx_vector_list
.
at
(
src_idx
);
size_t
src_prefix_start
=
cur_ids
.
lod
().
at
(
kSourceLevel
)[
src_idx
];
size_t
src_prefix_end
=
cur_ids
.
lod
().
at
(
kSourceLevel
)[
src_idx
+
1
];
if
(
prefix_idx_vector
.
empty
())
{
// be finished and pruned at this step
// or the last time step
for
(
size_t
prefix_idx
=
src_prefix_start
;
prefix_idx
<
src_prefix_end
;
++
prefix_idx
)
{
size_t
candidate_start
=
cur_ids
.
lod
().
at
(
kSentenceLevel
)[
prefix_idx
];
size_t
candidate_end
=
cur_ids
.
lod
().
at
(
kSentenceLevel
)[
prefix_idx
+
1
];
for
(
size_t
candidate_idx
=
candidate_start
;
candidate_idx
<
candidate_end
;
++
candidate_idx
)
{
prefix_idx_vector
.
push_back
(
prefix_idx
);
size_t
idx
=
prefix_idx_vector
.
size
()
-
1
;
auto
cur_id
=
cur_ids
.
data
<
int64_t
>
()[
candidate_idx
];
auto
cur_score
=
cur_scores
.
data
<
T
>
()[
candidate_idx
];
sentence_vector
.
at
(
idx
).
word_ids
.
push_back
(
cur_id
);
sentence_vector
.
at
(
idx
).
scores
.
push_back
(
cur_score
);
}
}
}
else
{
// use prefix_idx_vector to backtrace
size_t
src_candidate_start
=
cur_ids
.
lod
().
at
(
kSentenceLevel
)[
src_prefix_start
];
size_t
prefix_idx
=
src_prefix_start
;
size_t
candidate_num
=
cur_ids
.
lod
().
at
(
kSentenceLevel
)[
prefix_idx
+
1
]
-
cur_ids
.
lod
().
at
(
kSentenceLevel
)[
prefix_idx
];
for
(
size_t
idx
=
0
;
idx
<
prefix_idx_vector
.
size
();
++
idx
)
{
auto
candidate_idx
=
prefix_idx_vector
.
at
(
idx
);
auto
cur_id
=
cur_ids
.
data
<
int64_t
>
()[
candidate_idx
];
auto
cur_score
=
cur_scores
.
data
<
T
>
()[
candidate_idx
];
if
(
cur_id
!=
end_id_
||
sentence_vector
.
at
(
idx
).
word_ids
.
empty
())
{
// to skip redundant end tokens
sentence_vector
.
at
(
idx
).
word_ids
.
push_back
(
cur_id
);
sentence_vector
.
at
(
idx
).
scores
.
push_back
(
cur_score
);
}
PADDLE_ENFORCE_GT
(
src_num
,
0UL
,
"source num should be larger than 0"
);
// previous prefixes for each step,
// the init length is 0, means this is the first step.
std
::
vector
<
BeamNodeVector
<
T
>>
beamnode_vector_list
(
0
);
std
::
vector
<
SentenceVector
<
T
>>
sentence_vector_list
(
src_num
);
// pack all steps for one batch first, then another batch
for
(
size_t
step_id
=
0
;
step_id
<
step_num
;
++
step_id
)
{
beamnode_vector_list
=
PackTwoSteps
(
step_ids
.
at
(
step_id
),
step_scores
.
at
(
step_id
),
&
beamnode_vector_list
,
&
sentence_vector_list
);
}
// append last beam_node to result
for
(
size_t
src_idx
=
0
;
src_idx
<
src_num
;
++
src_idx
)
{
for
(
auto
&
beam_node
:
beamnode_vector_list
.
at
(
src_idx
))
{
sentence_vector_list
[
src_idx
].
push_back
(
MakeSentence
(
beam_node
.
get
()));
beam_node
.
reset
();
while
(
src_candidate_start
+
candidate_num
<=
candidate_idx
)
{
// search the corresponding prefix
prefix_idx
++
;
candidate_num
+=
cur_ids
.
lod
().
at
(
kSentenceLevel
)[
prefix_idx
+
1
]
-
cur_ids
.
lod
().
at
(
kSentenceLevel
)[
prefix_idx
];
}
prefix_idx_vector
.
at
(
idx
)
=
prefix_idx
;
}
}
}
}
ConvertSentenceVectorToLodTensor
(
sentence_vector_list
,
id_tensor
,
score_tensor
);
score_tensor
,
true
,
true
);
}
}
// namespace operators
...
...
paddle/fluid/operators/beam_search_decode_op_test.cc
浏览文件 @
163b5e57
...
...
@@ -20,15 +20,11 @@ using LoD = paddle::framework::LoD;
using
LoDTensor
=
paddle
::
framework
::
LoDTensor
;
using
LoDTensorArray
=
paddle
::
framework
::
LoDTensorArray
;
template
<
typename
T
>
using
BeamNode
=
paddle
::
operators
::
BeamNode
<
T
>
;
template
<
typename
T
>
using
BeamSearchDecoder
=
paddle
::
operators
::
BeamSearchDecoder
<
T
>
;
template
<
typename
T
>
using
Sentence
=
paddle
::
operators
::
Sentence
<
T
>
;
template
<
typename
T
>
using
BeamNodeVector
=
paddle
::
operators
::
BeamNodeVector
<
T
>
;
template
<
typename
T
>
using
SentenceVector
=
paddle
::
operators
::
SentenceVector
<
T
>
;
namespace
paddle
{
...
...
@@ -77,138 +73,50 @@ void GenerateExample(const std::vector<size_t>& level_0,
}
// namespace test
}
// namespace paddle
TEST
(
BeamSearchDecodeOp
,
DeleteBeamNode
)
{
auto
*
root
=
new
BeamNode
<
float
>
(
0
,
0
);
auto
*
b1
=
new
BeamNode
<
float
>
(
1
,
1
);
auto
*
b2
=
new
BeamNode
<
float
>
(
2
,
2
);
auto
*
b3
=
new
BeamNode
<
float
>
(
3
,
3
);
b1
->
AppendTo
(
root
);
b2
->
AppendTo
(
root
);
b3
->
AppendTo
(
b1
);
delete
b3
;
delete
b2
;
}
TEST
(
BeamSearchDecodeOp
,
MakeSentence
)
{
auto
*
root
=
new
BeamNode
<
float
>
(
0
,
0
);
auto
*
b1
=
new
BeamNode
<
float
>
(
1
,
1
);
auto
*
end
=
new
BeamNode
<
float
>
(
2
,
2
);
b1
->
AppendTo
(
root
);
end
->
AppendTo
(
b1
);
BeamSearchDecoder
<
float
>
helper
;
Sentence
<
float
>
sentence
=
helper
.
MakeSentence
(
end
);
delete
end
;
std
::
vector
<
int64_t
>
expect_ids
=
{
0
,
1
,
2
};
ASSERT_EQ
(
sentence
.
word_ids
,
expect_ids
);
std
::
vector
<
float
>
expect_scores
=
{
0
,
1
,
2
};
ASSERT_EQ
(
sentence
.
scores
,
expect_scores
);
}
TEST
(
BeamSearchDecodeOp
,
PackTwoStepsFistStep
)
{
CPUPlace
place
;
LoDTensorArray
ids
;
LoDTensorArray
scores
;
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
2
,
6
},
std
::
vector
<
size_t
>
{
0
,
1
,
2
,
3
,
4
,
5
,
6
},
std
::
vector
<
int
>
{
1
,
2
,
3
,
4
,
5
,
6
},
&
ids
,
&
scores
);
std
::
vector
<
BeamNodeVector
<
float
>>
beamnode_vector_list
;
std
::
vector
<
SentenceVector
<
float
>>
sentence_vector_list
(
2
,
SentenceVector
<
float
>
());
BeamSearchDecoder
<
float
>
helper
;
beamnode_vector_list
=
helper
.
PackTwoSteps
(
ids
[
0
],
scores
[
0
],
&
beamnode_vector_list
,
&
sentence_vector_list
);
ASSERT_EQ
(
beamnode_vector_list
.
size
(),
2UL
);
ASSERT_EQ
(
beamnode_vector_list
[
0
].
size
(),
2UL
);
ASSERT_EQ
(
beamnode_vector_list
[
1
].
size
(),
4UL
);
}
TEST
(
BeamSearchDecodeOp
,
PackTwoSteps
)
{
CPUPlace
place
;
// first source has three prefix
BeamNodeVector
<
float
>
source0_prefixes
;
source0_prefixes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
float
>>
(
new
BeamNode
<
float
>
(
1
,
1
)));
source0_prefixes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
float
>>
(
new
BeamNode
<
float
>
(
0
,
0
)));
source0_prefixes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
float
>>
(
new
BeamNode
<
float
>
(
3
,
3
)));
// second source has two prefix
BeamNodeVector
<
float
>
source1_prefixes
;
source1_prefixes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
float
>>
(
new
BeamNode
<
float
>
(
4
,
4
)));
source1_prefixes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
float
>>
(
new
BeamNode
<
float
>
(
5
,
5
)));
std
::
vector
<
BeamNodeVector
<
float
>>
beamnode_vector_list
;
std
::
vector
<
SentenceVector
<
float
>>
sentence_vector_list
(
2
,
SentenceVector
<
float
>
());
beamnode_vector_list
.
push_back
(
std
::
move
(
source0_prefixes
));
beamnode_vector_list
.
push_back
(
std
::
move
(
source1_prefixes
));
// generate data for one step
LoDTensorArray
ids
;
LoDTensorArray
scores
;
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
3
,
5
},
std
::
vector
<
size_t
>
{
0
,
1
,
1
,
3
,
4
,
5
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
,
4
},
&
ids
,
&
scores
);
BeamSearchDecoder
<
float
>
helper1
;
beamnode_vector_list
=
helper1
.
PackTwoSteps
(
ids
[
0
],
scores
[
0
],
&
beamnode_vector_list
,
&
sentence_vector_list
);
ASSERT_EQ
(
sentence_vector_list
[
0
].
size
(),
1UL
);
ASSERT_EQ
(
sentence_vector_list
[
1
].
size
(),
0UL
);
ASSERT_EQ
(
beamnode_vector_list
[
0
].
size
(),
3UL
);
ASSERT_EQ
(
beamnode_vector_list
[
1
].
size
(),
2UL
);
}
TEST
(
BeamSearchDecodeOp
,
PackAllSteps
)
{
TEST
(
BeamSearchDecodeOp
,
Backtrace
)
{
CPUPlace
place
;
// we will constuct a sample data with 3 steps and 2 source sentences
// Construct sample data with 5 steps and 2 source sentences
// beam_size = 2, start_id = 0, end_id = 1
LoDTensorArray
ids
;
LoDTensorArray
scores
;
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
3
,
6
},
std
::
vector
<
size_t
>
{
0
,
1
,
2
,
3
,
4
,
5
,
6
},
std
::
vector
<
int
>
{
1
,
2
,
3
,
4
,
5
,
6
},
&
ids
,
&
scores
);
std
::
vector
<
size_t
>
{
0
,
1
,
2
},
std
::
vector
<
size_t
>
{
0
,
1
,
2
},
std
::
vector
<
int
>
{
0
,
0
},
&
ids
,
&
scores
);
// start with start_id
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
1
,
2
},
std
::
vector
<
size_t
>
{
0
,
2
,
4
},
std
::
vector
<
int
>
{
2
,
3
,
4
,
5
},
&
ids
,
&
scores
);
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
2
,
4
},
std
::
vector
<
size_t
>
{
0
,
2
,
2
,
4
,
4
},
std
::
vector
<
int
>
{
3
,
1
,
5
,
4
},
&
ids
,
&
scores
);
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
2
,
4
},
std
::
vector
<
size_t
>
{
0
,
1
,
2
,
3
,
4
},
std
::
vector
<
int
>
{
1
,
1
,
3
,
5
},
&
ids
,
&
scores
);
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
3
,
6
},
std
::
vector
<
size_t
>
{
0
,
1
,
1
,
3
,
5
,
5
,
6
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
,
4
,
5
},
&
ids
,
&
scores
);
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
3
,
6
},
std
::
vector
<
size_t
>
{
0
,
0
,
1
,
2
,
3
,
4
,
5
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
,
4
},
&
ids
,
&
scores
);
std
::
vector
<
size_t
>
{
0
,
2
,
4
},
std
::
vector
<
size_t
>
{
0
,
0
,
0
,
2
,
2
},
// the branchs of the first source sentence
// are pruned since finished
std
::
vector
<
int
>
{
5
,
1
},
&
ids
,
&
scores
);
ASSERT_EQ
(
ids
.
size
(),
3
UL
);
ASSERT_EQ
(
scores
.
size
(),
3
UL
);
ASSERT_EQ
(
ids
.
size
(),
5
UL
);
ASSERT_EQ
(
scores
.
size
(),
5
UL
);
BeamSearchDecoder
<
float
>
helper
;
BeamSearchDecoder
<
float
>
helper
(
2
,
1
);
// beam_size = 2, end_id = 1
LoDTensor
id_tensor
;
LoDTensor
score_tensor
;
helper
.
PackAllSteps
(
ids
,
scores
,
&
id_tensor
,
&
score_tensor
);
helper
.
Backtrace
(
ids
,
scores
,
&
id_tensor
,
&
score_tensor
);
LoD
lod
=
id_tensor
.
lod
();
std
::
vector
<
size_t
>
expect_source_lod
=
{
0
,
4
,
8
};
std
::
vector
<
size_t
>
expect_source_lod
=
{
0
,
2
,
4
};
EXPECT_EQ
(
lod
[
0
],
expect_source_lod
);
std
::
vector
<
size_t
>
expect_sentence_lod
=
{
0
,
1
,
3
,
6
,
9
,
10
,
13
,
16
,
19
};
std
::
vector
<
size_t
>
expect_sentence_lod
=
{
0
,
4
,
7
,
12
,
17
};
EXPECT_EQ
(
lod
[
1
],
expect_sentence_lod
);
// 2| 1, 0| 3, 1, 0| 3, 2, 1| 5| 4, 3, 2| 4, 4, 3| 6, 5, 4
std
::
vector
<
int
>
expect_data
=
{
2
,
1
,
0
,
3
,
1
,
0
,
3
,
2
,
1
,
5
,
4
,
3
,
2
,
4
,
4
,
3
,
6
,
5
,
4
};
std
::
vector
<
int
>
expect_data
=
{
0
,
2
,
3
,
1
,
0
,
2
,
1
,
0
,
4
,
5
,
3
,
5
,
0
,
4
,
5
,
3
,
1
};
ASSERT_EQ
(
id_tensor
.
dims
()[
0
],
static_cast
<
int64_t
>
(
expect_data
.
size
()));
for
(
size_t
i
=
0
;
i
<
expect_data
.
size
();
++
i
)
{
ASSERT_EQ
(
id_tensor
.
data
<
int64_t
>
()[
i
],
...
...
paddle/fluid/operators/beam_search_op.cc
浏览文件 @
163b5e57
...
...
@@ -12,25 +12,26 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/beam_search_op.h"
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/beam_search_op.h"
namespace
paddle
{
namespace
operators
{
void
BeamSearch
::
operator
()(
const
framework
::
LoDTensor
&
pre_ids
,
const
framework
::
LoDTensor
&
pre_scores
,
framework
::
LoDTensor
*
selected_ids
,
framework
::
LoDTensor
*
selected_scores
)
{
auto
abs_lod
=
framework
::
ToAbsOffset
(
ids_
->
lod
());
auto
&
high_level
=
abs_lod
[
lod_level_
];
auto
items
=
SelectTopBeamSizeItems
();
auto
items
=
SelectTopBeamSizeItems
(
pre_ids
,
pre_scores
);
auto
selected_items
=
ToMap
(
items
,
high_level
.
back
());
VLOG
(
3
)
<<
"selected_items:"
;
for
(
size_t
i
=
0
;
i
<
selected_items
.
size
();
++
i
)
{
...
...
@@ -39,7 +40,8 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
VLOG
(
3
)
<<
ItemToString
(
item
);
}
}
PruneEndidCandidates
(
pre_ids
,
&
selected_items
);
PruneEndBeams
(
pre_ids
,
&
selected_items
);
// calculate the output tensor's height
size_t
num_instances
=
std
::
accumulate
(
std
::
begin
(
selected_items
),
std
::
end
(
selected_items
),
0
,
...
...
@@ -61,12 +63,6 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
size_t
low_offset
=
0
;
for
(
auto
&
items
:
selected_items
)
{
low_level
.
push_back
(
low_offset
);
sort
(
items
.
begin
(),
items
.
end
(),
[](
const
Item
&
a
,
const
Item
&
b
)
{
if
(
a
.
offset
<
b
.
offset
)
{
return
true
;
}
return
a
.
id
<
b
.
id
;
});
for
(
auto
&
item
:
items
)
{
ids_data
[
low_offset
]
=
item
.
id
;
scores_data
[
low_offset
]
=
item
.
score
;
...
...
@@ -86,21 +82,31 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
selected_scores
->
set_lod
(
lod
);
}
int
BeamSearch
::
PruneEndidCandidate
s
(
const
framework
::
LoDTensor
&
pre_ids
,
std
::
vector
<
std
::
vector
<
Item
>>
*
items
)
{
void
BeamSearch
::
PruneEndBeam
s
(
const
framework
::
LoDTensor
&
pre_ids
,
std
::
vector
<
std
::
vector
<
Item
>>
*
items
)
{
auto
*
pre_ids_data
=
pre_ids
.
data
<
int64_t
>
();
int
res
=
0
;
for
(
size_t
offset
=
0
;
offset
<
items
->
size
();
offset
++
)
{
auto
prefix_id
=
pre_ids_data
[
offset
];
if
(
prefix_id
==
end_id_
)
{
items
->
at
(
offset
).
clear
();
}
else
{
res
++
;
auto
abs_lod
=
framework
::
ToAbsOffset
(
ids_
->
lod
());
auto
&
high_level
=
abs_lod
[
lod_level_
];
for
(
size_t
src_idx
=
0
;
src_idx
<
high_level
.
size
()
-
1
;
++
src_idx
)
{
size_t
src_prefix_start
=
high_level
[
src_idx
];
size_t
src_prefix_end
=
high_level
[
src_idx
+
1
];
bool
finish_flag
=
true
;
for
(
size_t
offset
=
src_prefix_start
;
offset
<
src_prefix_end
;
offset
++
)
{
for
(
auto
&
item
:
items
->
at
(
offset
))
{
if
(
item
.
id
!=
static_cast
<
size_t
>
(
end_id_
)
||
pre_ids_data
[
offset
]
!=
end_id_
)
{
finish_flag
=
false
;
break
;
}
}
if
(
!
finish_flag
)
break
;
}
if
(
finish_flag
)
{
// all branchs of the beam (source sentence) end and
// prune this beam
for
(
size_t
offset
=
src_prefix_start
;
offset
<
src_prefix_end
;
offset
++
)
items
->
at
(
offset
).
clear
();
}
}
return
res
;
}
std
::
vector
<
std
::
vector
<
BeamSearch
::
Item
>>
BeamSearch
::
ToMap
(
...
...
@@ -115,19 +121,17 @@ std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap(
return
result
;
}
std
::
vector
<
std
::
vector
<
BeamSearch
::
Item
>>
BeamSearch
::
SelectTopBeamSizeItems
()
{
std
::
vector
<
std
::
vector
<
BeamSearch
::
Item
>>
BeamSearch
::
SelectTopBeamSizeItems
(
const
framework
::
LoDTensor
&
pre_ids
,
const
framework
::
LoDTensor
&
pre_scores
)
{
std
::
vector
<
std
::
vector
<
Item
>>
result
;
std
::
vector
<
Item
>
items
;
// for each source sentence, select the top beam_size items across all
// candidate sets.
while
(
NextItemSet
(
&
items
))
{
std
::
nth_element
(
std
::
begin
(
items
),
std
::
begin
(
items
)
+
beam_size_
,
std
::
end
(
items
),
[](
const
Item
&
a
,
const
Item
&
b
)
{
// TODO(superjom) make score's comparation customizable.
// partial sort in descending order
return
a
.
score
>
b
.
score
;
});
while
(
NextItemSet
(
pre_ids
,
pre_scores
,
&
items
))
{
std
::
nth_element
(
std
::
begin
(
items
),
std
::
begin
(
items
)
+
beam_size_
,
std
::
end
(
items
),
[](
const
Item
&
a
,
const
Item
&
b
)
{
return
a
.
score
>
b
.
score
;
});
// prune the top beam_size items.
if
(
items
.
size
()
>
beam_size_
)
{
items
.
resize
(
beam_size_
);
...
...
@@ -146,7 +150,9 @@ BeamSearch::SelectTopBeamSizeItems() {
}
// the candidates of a source
bool
BeamSearch
::
NextItemSet
(
std
::
vector
<
BeamSearch
::
Item
>
*
items
)
{
bool
BeamSearch
::
NextItemSet
(
const
framework
::
LoDTensor
&
pre_ids
,
const
framework
::
LoDTensor
&
pre_scores
,
std
::
vector
<
BeamSearch
::
Item
>
*
items
)
{
if
(
sent_offset_
>=
ids_
->
NumElements
(
lod_level_
))
{
return
false
;
}
...
...
@@ -164,14 +170,24 @@ bool BeamSearch::NextItemSet(std::vector<BeamSearch::Item> *items) {
instance_dim
*=
ids
.
dims
()[
i
];
}
auto
*
pre_ids_data
=
pre_ids
.
data
<
int64_t
>
();
auto
*
pre_scores_data
=
pre_scores
.
data
<
float
>
();
items
->
clear
();
items
->
reserve
(
framework
::
product
(
ids
.
dims
()));
for
(
size_t
offset
=
abs_lod
[
lod_level_
][
sent_offset_
];
offset
<
abs_lod
[
lod_level_
][
sent_offset_
+
1
];
offset
++
)
{
for
(
size_t
d
=
0
;
d
<
instance_dim
;
d
++
)
{
const
size_t
dim_offset
=
offset
*
instance_dim
+
d
;
items
->
emplace_back
(
offset
,
ids_data
[
dim_offset
],
scores_data
[
dim_offset
]);
auto
pre_id
=
pre_ids_data
[
offset
];
auto
pre_score
=
pre_scores_data
[
offset
];
if
(
pre_id
==
end_id_
)
{
// Allocate all probability mass to eos_id for finished branchs and the
// other candidate ids can be ignored.
items
->
emplace_back
(
offset
,
end_id_
,
pre_score
);
}
else
{
for
(
size_t
d
=
0
;
d
<
instance_dim
;
d
++
)
{
const
size_t
dim_offset
=
offset
*
instance_dim
+
d
;
items
->
emplace_back
(
offset
,
ids_data
[
dim_offset
],
scores_data
[
dim_offset
]);
}
}
}
...
...
@@ -199,15 +215,27 @@ class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
// inputs and outputs stored in proto
AddInput
(
"pre_ids"
,
"ids in previous step"
);
AddInput
(
"ids"
,
"a LoDTensor of shape of [None,k]"
);
AddInput
(
"pre_ids"
,
"(LoDTensor) The LoDTensor containing the selected ids at the "
"previous step. It should be a tensor with shape (batch_size, 1) "
"and lod `[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at "
"thefirst step."
);
AddInput
(
"pre_scores"
,
"(LoDTensor) The LoDTensor containing the accumulated "
"scores corresponding to the selected ids at the previous step."
);
AddInput
(
"ids"
,
"(LoDTensor) The LoDTensor containing the candidates ids. Its "
"shape should be (batch_size * beam_size, K), where K supposed to "
"be beam_size."
);
AddInput
(
"scores"
,
"a LoDTensor that has the same shape and LoD with `ids`"
);
"(LoDTensor) The LodTensor containing the accumulated scores "
"corresponding to Input(ids) and its shape is the same as the "
"shape of Input(ids)."
);
AddOutput
(
"selected_ids"
,
"
a LoDTensor that stores the IDs selected by beam search
"
);
AddOutput
(
"selected_scores"
,
"a LoDTensor that has the same shape and LoD with `selected_ids`
"
);
"
A LodTensor that stores the IDs selected by beam search.
"
);
AddOutput
(
"selected_scores"
,
"A LoDTensor containing the accumulated scores corresponding to "
"Output(selected_ids).
"
);
// Attributes stored in AttributeMap
AddAttr
<
int
>
(
"level"
,
"the level of LoDTensor"
);
...
...
@@ -215,8 +243,21 @@ class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int
>
(
"end_id"
,
"the token id which indicates the end of a sequence"
);
AddComment
(
"This is a beam search operator that help to generate sequences."
);
AddComment
(
R"DOC(
This operator does the search in beams for one time step.
Specifically, it selects the top-K candidate word ids of current step from
Input(ids) according to their Input(scores) for all source sentences,
where K is Attr(beam_size) and Input(ids), Input(scores) are predicted results
from the computation cell. Additionally, Input(pre_ids) and Input(pre_scores)
are the output of beam_search at previous step, they are needed for special use
to handle ended candidate translations. The paths linking prefixes and selected
candidates are organized and reserved in lod.
Note that the Input(scores) passed in should be accumulated scores, and
length penalty should be done with extra operators before calculating the
accumulated scores if needed, also suggest finding top-K before it and
using the top-K candidates following.
)DOC"
);
}
};
...
...
@@ -253,10 +294,12 @@ class BeamSearchInferVarType : public framework::VarTypeInference {
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o
:
op_desc
.
Output
(
"selected_ids"
))
{
block
->
Var
(
o
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
auto
&
selected_ids
=
block
->
FindRecursiveOrCreateVar
(
o
);
selected_ids
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
for
(
auto
&
o
:
op_desc
.
Output
(
"selected_scores"
))
{
block
->
Var
(
o
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
auto
&
selected_scores
=
block
->
FindRecursiveOrCreateVar
(
o
);
selected_scores
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
};
...
...
paddle/fluid/operators/beam_search_op.h
浏览文件 @
163b5e57
...
...
@@ -132,6 +132,7 @@ class BeamSearch {
* that means no candidates is provided, and the task will stop running.
*/
void
operator
()(
const
framework
::
LoDTensor
&
pre_ids
,
const
framework
::
LoDTensor
&
pre_scores
,
framework
::
LoDTensor
*
selected_ids
,
framework
::
LoDTensor
*
selected_scores
);
/*
...
...
@@ -153,14 +154,16 @@ class BeamSearch {
protected:
/*
* Delete all the records that follows the end token.
* Prune the source sentences all branchs finished, and it is optional.
* Pruning must one step later than finishing (thus pre_ids is needed here),
* since the end tokens must be writed out.
*/
int
PruneEndidCandidate
s
(
const
framework
::
LoDTensor
&
pre_ids
,
std
::
vector
<
std
::
vector
<
Item
>>*
items
);
void
PruneEndBeam
s
(
const
framework
::
LoDTensor
&
pre_ids
,
std
::
vector
<
std
::
vector
<
Item
>>*
items
);
/*
* Transform the items into a map whose key is offset, value is the items.
* NOTE low performance
* NOTE low performance
.
*/
std
::
vector
<
std
::
vector
<
Item
>>
ToMap
(
const
std
::
vector
<
std
::
vector
<
Item
>>&
inputs
,
size_t
element_num
);
...
...
@@ -168,12 +171,16 @@ class BeamSearch {
/*
* For each source, select top beam_size records.
*/
std
::
vector
<
std
::
vector
<
Item
>>
SelectTopBeamSizeItems
();
std
::
vector
<
std
::
vector
<
Item
>>
SelectTopBeamSizeItems
(
const
framework
::
LoDTensor
&
pre_ids
,
const
framework
::
LoDTensor
&
pre_scores
);
/*
* Get the items of next source sequence, return false if no remaining items.
*/
bool
NextItemSet
(
std
::
vector
<
Item
>*
items
);
bool
NextItemSet
(
const
framework
::
LoDTensor
&
pre_ids
,
const
framework
::
LoDTensor
&
pre_scores
,
std
::
vector
<
Item
>*
items
);
private:
size_t
beam_size_
;
...
...
@@ -192,24 +199,25 @@ template <typename DeviceContext, typename T>
class
BeamSearchOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
ids_var
=
context
.
Input
<
framework
::
LoDTensor
>
(
"ids"
);
auto
*
scores_var
=
context
.
Input
<
framework
::
LoDTensor
>
(
"scores"
);
auto
*
pre_ids_var
=
context
.
Input
<
framework
::
LoDTensor
>
(
"pre_ids"
);
PADDLE_ENFORCE_NOT_NULL
(
ids_var
);
PADDLE_ENFORCE_NOT_NULL
(
scores_var
);
PADDLE_ENFORCE_NOT_NULL
(
pre_ids_var
);
auto
*
ids
=
context
.
Input
<
framework
::
LoDTensor
>
(
"ids"
);
auto
*
scores
=
context
.
Input
<
framework
::
LoDTensor
>
(
"scores"
);
auto
*
pre_ids
=
context
.
Input
<
framework
::
LoDTensor
>
(
"pre_ids"
);
auto
*
pre_scores
=
context
.
Input
<
framework
::
LoDTensor
>
(
"pre_scores"
);
PADDLE_ENFORCE_NOT_NULL
(
ids
);
PADDLE_ENFORCE_NOT_NULL
(
scores
);
PADDLE_ENFORCE_NOT_NULL
(
pre_ids
);
PADDLE_ENFORCE_NOT_NULL
(
pre_scores
);
size_t
level
=
context
.
Attr
<
int
>
(
"level"
);
size_t
beam_size
=
context
.
Attr
<
int
>
(
"beam_size"
);
int
end_id
=
context
.
Attr
<
int
>
(
"end_id"
);
BeamSearch
alg
(
*
ids_var
,
*
scores_var
,
level
,
beam_size
,
end_id
);
auto
selected_ids_var
=
context
.
Output
<
framework
::
LoDTensor
>
(
"selected_ids"
);
auto
selected_scores_var
=
BeamSearch
alg
(
*
ids
,
*
scores
,
level
,
beam_size
,
end_id
);
auto
selected_ids
=
context
.
Output
<
framework
::
LoDTensor
>
(
"selected_ids"
);
auto
selected_scores
=
context
.
Output
<
framework
::
LoDTensor
>
(
"selected_scores"
);
PADDLE_ENFORCE_NOT_NULL
(
selected_ids
_var
);
PADDLE_ENFORCE_NOT_NULL
(
selected_scores
_var
);
alg
(
*
pre_ids
_var
,
selected_ids_var
,
selected_scores_var
);
PADDLE_ENFORCE_NOT_NULL
(
selected_ids
);
PADDLE_ENFORCE_NOT_NULL
(
selected_scores
);
alg
(
*
pre_ids
,
*
pre_scores
,
selected_ids
,
selected_scores
);
}
};
}
// namespace operators
...
...
paddle/fluid/operators/beam_search_op_test.cc
浏览文件 @
163b5e57
...
...
@@ -30,7 +30,7 @@ using std::endl;
void
CreateInput
(
LoDTensor
*
ids
,
LoDTensor
*
scores
)
{
LoD
lod
;
vector
<
size_t
>
level0
({
0
,
1
,
4
});
vector
<
size_t
>
level0
({
0
,
2
,
4
});
vector
<
size_t
>
level1
({
0
,
1
,
2
,
3
,
4
});
lod
.
push_back
(
level0
);
lod
.
push_back
(
level1
);
...
...
@@ -64,17 +64,22 @@ TEST(beam_search_op, run) {
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
pre_ids
.
mutable_data
<
int64_t
>
(
place
)[
i
]
=
i
+
1
;
}
LoDTensor
pre_scores
;
pre_scores
.
Resize
(
framework
::
make_ddim
(
vector
<
int64_t
>
(
4
,
1
)));
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
pre_scores
.
mutable_data
<
float
>
(
place
)[
i
]
=
0.1
*
(
i
+
1
);
}
BeamSearch
beamsearch
(
ids
,
scores
,
(
int64_t
)
0
,
(
int64
_t
)
2
,
0
);
BeamSearch
beamsearch
(
ids
,
scores
,
(
size_t
)
0
,
(
size
_t
)
2
,
0
);
LoDTensor
sids
,
sscores
;
beamsearch
(
pre_ids
,
&
sids
,
&
sscores
);
beamsearch
(
pre_ids
,
pre_scores
,
&
sids
,
&
sscores
);
LOG
(
INFO
)
<<
"score: "
<<
sscores
<<
endl
;
ASSERT_EQ
(
sids
.
lod
(),
sscores
.
lod
());
vector
<
int
>
tids
({
2
,
4
,
3
,
8
});
vector
<
float
>
tscores
({
0.
3
,
0.5
,
0.9
,
0.7
});
vector
<
int
>
tids
({
4
,
2
,
3
,
8
});
vector
<
float
>
tscores
({
0.
5
,
0.6
,
0.9
,
0.7
});
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
ASSERT_EQ
(
tids
[
i
],
sids
.
data
<
int64_t
>
()[
i
]);
...
...
paddle/fluid/operators/tensor_array_read_write_op.cc
浏览文件 @
163b5e57
...
...
@@ -38,15 +38,14 @@ class WriteToArrayOp : public ArrayOp {
<<
" to "
<<
offset
+
1
;
out
->
resize
(
offset
+
1
);
}
auto
*
out_tensor
=
&
out
->
at
(
offset
);
out_tensor
->
set_lod
(
x_tensor
.
lod
());
if
(
x_tensor
.
memory_size
()
>
0
)
{
auto
*
out_tensor
=
&
out
->
at
(
offset
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
place
);
TensorCopy
(
x_tensor
,
place
,
dev_ctx
,
out_tensor
);
out_tensor
->
set_lod
(
x_tensor
.
lod
());
}
else
{
VLOG
(
10
)
<<
"WARNING: The input tensor 'x_tensor' holds no memory, so "
"nothing has been written to output array["
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
163b5e57
...
...
@@ -2223,56 +2223,6 @@ def layer_norm(input,
return
helper
.
append_activation
(
layer_norm_out
)
def
beam_search_decode
(
ids
,
scores
,
name
=
None
):
"""
Beam Search Decode
This layers is to pack the output of beam search layer into sentences and
associated scores. It is usually called after the beam search layer.
Typically, the output of beam search layer is a tensor of selected ids, with
a tensor of the score of each id. Beam search layer's output ids, however,
are generated directly during the tree search, and they are stacked by each
level of the search tree. Thus we need to reorganize them into sentences,
based on the score of each id. This layer takes the output of beam search
layer as input and repack them into sentences.
Args:
ids (Variable): The selected ids, output of beam search layer.
scores (Variable): The associated scores of the ids, out put of beam
search layer.
name (str): The name of this layer. It is optional.
Returns:
tuple(Variable): a tuple of two output tensors: sentence_ids, sentence_scores.
sentence_ids is a tensor with shape [size, length], where size is the
beam size of beam search, and length is the length of each sentence.
Note that the length of sentences may vary.
sentence_scores is a tensor with the same shape as sentence_ids.
Examples:
.. code-block:: python
ids, scores = fluid.layers.beam_search(
pre_ids, ids, scores, beam_size, end_id)
sentence_ids, sentence_scores = fluid.layers.beam_search_decode(
ids, scores)
"""
helper
=
LayerHelper
(
'beam_search_decode'
,
**
locals
())
sentence_ids
=
helper
.
create_tmp_variable
(
dtype
=
ids
.
dtype
)
sentence_scores
=
helper
.
create_tmp_variable
(
dtype
=
ids
.
dtype
)
helper
.
append_op
(
type
=
"beam_search_decode"
,
inputs
=
{
"Ids"
:
ids
,
"Scores"
:
scores
},
outputs
=
{
"SentenceIds"
:
sentence_ids
,
"SentenceScores"
:
sentence_scores
})
return
sentence_ids
,
sentence_scores
def
conv2d_transpose
(
input
,
num_filters
,
output_size
=
None
,
...
...
@@ -2676,38 +2626,89 @@ def sequence_expand(x, y, ref_level=-1, name=None):
return
tmp
def
beam_search
(
pre_ids
,
ids
,
scores
,
beam_size
,
end_id
,
level
=
0
):
'''
**beam search**
This function implements the beam search algorithm.
Beam search is a classical algorithm for selecting candidate words
in a machine translation task.
def
beam_search
(
pre_ids
,
pre_scores
,
ids
,
scores
,
beam_size
,
end_id
,
level
=
0
,
name
=
None
):
"""
Beam search is a classical algorithm for selecting candidate words in a
machine translation task.
Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
for more details.
This layer does the search in beams for one time step. Specifically, it
selects the top-K candidate word ids of current step from :attr:`ids`
according to their :attr:`scores` for all source sentences, where K is
:attr:`beam_size` and :attr:`ids, scores` are predicted results from the
computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
the output of beam_search at previous step, they are needed for special use
to handle ended candidate translations.
Note that the :attr:`scores` passed in should be accumulated scores, and
length penalty should be done with extra operators before calculating the
accumulated scores if needed, also suggest finding top-K before it and
using the top-K candidates following.
Please see the following demo for a fully beam search usage example:
fluid/tests/book/test_machine_translation.py
Args:
pre_ids (Variable): ids in previous step.
ids (Variable): a LoDTensor of shape of [None,k]
scores (Variable): a LoDTensor that has the same shape and LoD with `ids`
beam_size (int): beam size for beam search
end_id (int): the token id which indicates the end of a sequence
level (int): the level of LoDTensor
pre_ids(Variable): The LodTensor variable which is the output of
beam_search at previous step. It should be a LodTensor with shape
:math:`(batch_size, 1)` and lod
:math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
first step.
pre_scores(Variable): The LodTensor variable which is the output of
beam_search at previous step.
ids(Variable): The LodTensor variable containing the candidates ids.
Its shape should be :math:`(batch_size
\\
times beam_size, K)`,
where :math:`K` supposed to be :attr:`beam_size`.
scores(Variable): The LodTensor variable containing the accumulated
scores corresponding to :attr:`ids` and its shape is the same as
the shape of :attr:`ids`.
beam_size(int): The beam width used in beam search.
end_id(int): The id of end token.
level(int, default 0): It can be ignored and mustn't change currently.
It means the source level of lod, which is explained as following.
The lod level of :attr:`ids` should be 2. The first level is source
level which describes how many prefixes (branchs) for each source
sentece (beam), and the second level is sentence level which
describes how these candidates belong to the prefix. The paths
linking prefixes and selected candidates are organized and reserved
in lod.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: a tuple of beam_search output variables: `selected_ids`, `selected_scores`
Variable: The LodTensor pair containing the selected ids and the
\
corresponding scores.
Examples:
.. code-block:: python
# current_score is a Tensor of shape (num_batch_size, embed_size), which
# consists score of each candidate word.
topk_scores, topk_indices = pd.topk(current_score, k=50)
selected_ids, selected_scores = pd.beam_search(
pre_ids, topk_indices, topk_scores, beam_size, end_id=10, level=0)
'''
# Suppose `probs` contains predicted results from the computation
# cell and `pre_ids` and `pre_scores` is the output of beam_search
# at previous step.
topk_scores, topk_indices = layers.topk(probs, k=beam_size)
accu_scores = layers.elementwise_add(
x=layers.log(x=topk_scores)),
y=layers.reshape(
pre_scores, shape=[-1]),
axis=0)
selected_ids, selected_scores = layers.beam_search(
pre_ids=pre_ids,
pre_scores=pre_scores,
ids=topk_indices,
scores=accu_scores,
beam_size=beam_size,
end_id=end_id)
"""
helper
=
LayerHelper
(
'beam_search'
,
**
locals
())
score_type
=
scores
.
dtype
id_type
=
ids
.
dtype
...
...
@@ -2719,6 +2720,7 @@ def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
type
=
'beam_search'
,
inputs
=
{
'pre_ids'
:
pre_ids
,
'pre_scores'
:
pre_scores
,
'ids'
:
ids
,
'scores'
:
scores
,
},
...
...
@@ -2736,6 +2738,56 @@ def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
return
selected_ids
,
selected_scores
def
beam_search_decode
(
ids
,
scores
,
beam_size
,
end_id
,
name
=
None
):
"""
Beam Search Decode Layer. This layer constructs the full hypotheses for
each source sentence by walking back along the LoDTensorArray :attr:`ids`
whose lods can be used to restore the path in the beam search tree.
Please see the following demo for a fully beam search usage example:
fluid/tests/book/test_machine_translation.py
Args:
ids(Variable): The LodTensorArray variable containing the selected ids
of all steps.
scores(Variable): The LodTensorArray variable containing the selected
scores of all steps.
beam_size(int): The beam width used in beam search.
end_id(int): The id of end token.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The LodTensor pair containing the generated id sequences
\
and the corresponding scores. The shapes and lods of the two
\
LodTensor are same. The lod level is 2 and the two levels
\
separately indicate how many hypotheses each source sentence has
\
and how many ids each hypothesis has.
Examples:
.. code-block:: python
# Suppose `ids` and `scores` are LodTensorArray variables reserving
# the selected ids and scores of all steps
finished_ids, finished_scores = layers.beam_search_decode(
ids, scores, beam_size=5, end_id=0)
"""
helper
=
LayerHelper
(
'beam_search_decode'
,
**
locals
())
sentence_ids
=
helper
.
create_tmp_variable
(
dtype
=
ids
.
dtype
)
sentence_scores
=
helper
.
create_tmp_variable
(
dtype
=
ids
.
dtype
)
helper
.
append_op
(
type
=
"beam_search_decode"
,
inputs
=
{
"Ids"
:
ids
,
"Scores"
:
scores
},
outputs
=
{
"SentenceIds"
:
sentence_ids
,
"SentenceScores"
:
sentence_scores
},
attrs
=
{
"beam_size"
:
beam_size
,
"end_id"
:
end_id
})
return
sentence_ids
,
sentence_scores
def
lstm_unit
(
x_t
,
hidden_t_prev
,
cell_t_prev
,
...
...
python/paddle/fluid/tests/book/high-level-api/machine_translation/test_machine_translation.py
浏览文件 @
163b5e57
...
...
@@ -127,9 +127,19 @@ def decode(context, is_sparse):
current_score
=
pd
.
fc
(
input
=
current_state_with_lod
,
size
=
target_dict_dim
,
act
=
'softmax'
)
topk_scores
,
topk_indices
=
pd
.
topk
(
current_score
,
k
=
topk_size
)
topk_scores
,
topk_indices
=
pd
.
topk
(
current_score
,
k
=
beam_size
)
# calculate accumulated scores after topk to reduce computation cost
accu_scores
=
pd
.
elementwise_add
(
x
=
pd
.
log
(
topk_scores
),
y
=
pd
.
reshape
(
pre_score
,
shape
=
[
-
1
]),
axis
=
0
)
selected_ids
,
selected_scores
=
pd
.
beam_search
(
pre_ids
,
topk_indices
,
topk_scores
,
beam_size
,
end_id
=
10
,
level
=
0
)
pre_ids
,
pre_score
,
topk_indices
,
accu_scores
,
beam_size
,
end_id
=
10
,
level
=
0
)
pd
.
increment
(
x
=
counter
,
value
=
1
,
in_place
=
True
)
...
...
@@ -138,10 +148,14 @@ def decode(context, is_sparse):
pd
.
array_write
(
selected_ids
,
array
=
ids_array
,
i
=
counter
)
pd
.
array_write
(
selected_scores
,
array
=
scores_array
,
i
=
counter
)
pd
.
less_than
(
x
=
counter
,
y
=
array_len
,
cond
=
cond
)
# update the break condition: up to the max length or all candidates of
# source sentences have ended.
length_cond
=
pd
.
less_than
(
x
=
counter
,
y
=
array_len
)
finish_cond
=
pd
.
logical_not
(
pd
.
is_empty
(
x
=
selected_ids
))
pd
.
logical_and
(
x
=
length_cond
,
y
=
finish_cond
,
out
=
cond
)
translation_ids
,
translation_scores
=
pd
.
beam_search_decode
(
ids
=
ids_array
,
scores
=
scores_array
)
ids
=
ids_array
,
scores
=
scores_array
,
beam_size
=
beam_size
,
end_id
=
10
)
# return init_ids, init_scores
...
...
python/paddle/fluid/tests/book/test_machine_translation.py
浏览文件 @
163b5e57
...
...
@@ -126,9 +126,19 @@ def decoder_decode(context, is_sparse):
current_score
=
pd
.
fc
(
input
=
current_state_with_lod
,
size
=
target_dict_dim
,
act
=
'softmax'
)
topk_scores
,
topk_indices
=
pd
.
topk
(
current_score
,
k
=
50
)
topk_scores
,
topk_indices
=
pd
.
topk
(
current_score
,
k
=
beam_size
)
# calculate accumulated scores after topk to reduce computation cost
accu_scores
=
pd
.
elementwise_add
(
x
=
pd
.
log
(
topk_scores
),
y
=
pd
.
reshape
(
pre_score
,
shape
=
[
-
1
]),
axis
=
0
)
selected_ids
,
selected_scores
=
pd
.
beam_search
(
pre_ids
,
topk_indices
,
topk_scores
,
beam_size
,
end_id
=
10
,
level
=
0
)
pre_ids
,
pre_score
,
topk_indices
,
accu_scores
,
beam_size
,
end_id
=
10
,
level
=
0
)
pd
.
increment
(
x
=
counter
,
value
=
1
,
in_place
=
True
)
...
...
@@ -137,10 +147,14 @@ def decoder_decode(context, is_sparse):
pd
.
array_write
(
selected_ids
,
array
=
ids_array
,
i
=
counter
)
pd
.
array_write
(
selected_scores
,
array
=
scores_array
,
i
=
counter
)
pd
.
less_than
(
x
=
counter
,
y
=
array_len
,
cond
=
cond
)
# update the break condition: up to the max length or all candidates of
# source sentences have ended.
length_cond
=
pd
.
less_than
(
x
=
counter
,
y
=
array_len
)
finish_cond
=
pd
.
logical_not
(
pd
.
is_empty
(
x
=
selected_ids
))
pd
.
logical_and
(
x
=
length_cond
,
y
=
finish_cond
,
out
=
cond
)
translation_ids
,
translation_scores
=
pd
.
beam_search_decode
(
ids
=
ids_array
,
scores
=
scores_array
)
ids
=
ids_array
,
scores
=
scores_array
,
beam_size
=
beam_size
,
end_id
=
10
)
# return init_ids, init_scores
...
...
python/paddle/fluid/tests/unittests/test_beam_search_decode_op.py
浏览文件 @
163b5e57
...
...
@@ -20,44 +20,58 @@ from paddle.fluid.op import Operator
class
TestBeamSearchDecodeOp
(
unittest
.
TestCase
):
"""unittest of beam_search_decode_op"""
def
setUp
(
self
):
self
.
scope
=
core
.
Scope
()
self
.
place
=
core
.
CPUPlace
()
def
append_lod_tensor
(
self
,
tensor_array
,
lod
,
data
):
lod_tensor
=
core
.
LoDTensor
()
lod_tensor
.
set_
recursive_sequence_lengths
(
lod
)
lod_tensor
.
set_
lod
(
lod
)
lod_tensor
.
set
(
data
,
self
.
place
)
tensor_array
.
append
(
lod_tensor
)
def
test_get_set
(
self
):
ids
=
self
.
scope
.
var
(
"ids"
).
get_lod_tensor_array
()
self
.
append_lod_tensor
(
ids
,
[[
3
,
3
],
[
1
,
1
,
1
,
1
,
1
,
1
]],
np
.
array
(
[
1
,
2
,
3
,
4
,
5
,
6
],
dtype
=
"int64"
))
self
.
append_lod_tensor
(
ids
,
[[
3
,
3
],
[
1
,
0
,
2
,
2
,
0
,
1
]],
np
.
array
(
[
0
,
1
,
2
,
3
,
4
,
5
],
dtype
=
"int64"
))
self
.
append_lod_tensor
(
ids
,
[[
3
,
3
],
[
0
,
1
,
1
,
1
,
1
,
1
]],
np
.
array
(
[
0
,
1
,
2
,
3
,
4
],
dtype
=
"int64"
))
scores
=
self
.
scope
.
var
(
"scores"
).
get_lod_tensor_array
()
self
.
append_lod_tensor
(
scores
,
[[
3
,
3
],
[
1
,
1
,
1
,
1
,
1
,
1
]],
np
.
array
(
[
1
,
2
,
3
,
4
,
5
,
6
],
dtype
=
"float64"
))
self
.
append_lod_tensor
(
scores
,
[[
3
,
3
],
[
1
,
0
,
2
,
2
,
0
,
1
]],
np
.
array
(
[
0
,
1
,
2
,
3
,
4
,
5
],
dtype
=
"float64"
))
self
.
append_lod_tensor
(
scores
,
[[
3
,
3
],
[
0
,
1
,
1
,
1
,
1
,
1
]],
np
.
array
(
[
0
,
1
,
2
,
3
,
4
],
dtype
=
"float64"
))
# Construct sample data with 5 steps and 2 source sentences
# beam_size = 2, end_id = 1
# start with start_id
[
self
.
append_lod_tensor
(
array
,
[[
0
,
1
,
2
],
[
0
,
1
,
2
]],
np
.
array
(
[
0
,
0
],
dtype
=
dtype
))
for
array
,
dtype
in
((
ids
,
"int64"
),
(
scores
,
"float32"
))
]
[
self
.
append_lod_tensor
(
array
,
[[
0
,
1
,
2
],
[
0
,
2
,
4
]],
np
.
array
(
[
2
,
3
,
4
,
5
],
dtype
=
dtype
))
for
array
,
dtype
in
((
ids
,
"int64"
),
(
scores
,
"float32"
))
]
[
self
.
append_lod_tensor
(
array
,
[[
0
,
2
,
4
],
[
0
,
2
,
2
,
4
,
4
]],
np
.
array
(
[
3
,
1
,
5
,
4
],
dtype
=
dtype
))
for
array
,
dtype
in
((
ids
,
"int64"
),
(
scores
,
"float32"
))
]
[
self
.
append_lod_tensor
(
array
,
[[
0
,
2
,
4
],
[
0
,
1
,
2
,
3
,
4
]],
np
.
array
(
[
1
,
1
,
3
,
5
],
dtype
=
dtype
))
for
array
,
dtype
in
((
ids
,
"int64"
),
(
scores
,
"float32"
))
]
[
self
.
append_lod_tensor
(
array
,
[[
0
,
2
,
4
],
[
0
,
0
,
0
,
2
,
2
]],
np
.
array
(
[
5
,
1
],
dtype
=
dtype
))
for
array
,
dtype
in
((
ids
,
"int64"
),
(
scores
,
"float32"
))
]
sentence_ids
=
self
.
scope
.
var
(
"sentence_ids"
).
get_tensor
()
sentence_scores
=
self
.
scope
.
var
(
"sentence_scores"
).
get_tensor
()
...
...
@@ -69,18 +83,18 @@ class TestBeamSearchDecodeOp(unittest.TestCase):
Scores
=
"scores"
,
# outputs
SentenceIds
=
"sentence_ids"
,
SentenceScores
=
"sentence_scores"
)
SentenceScores
=
"sentence_scores"
,
beam_size
=
2
,
end_id
=
1
,
)
beam_search_decode_op
.
run
(
self
.
scope
,
self
.
place
)
expected_lod
=
[[
4
,
4
],
[
1
,
2
,
3
,
3
,
1
,
3
,
3
,
3
]]
self
.
assertEqual
(
sentence_ids
.
recursive_sequence_lengths
(),
expected_lod
)
self
.
assertEqual
(
sentence_scores
.
recursive_sequence_lengths
(),
expected_lod
)
expected_lod
=
[[
0
,
2
,
4
],
[
0
,
4
,
7
,
12
,
17
]]
self
.
assertEqual
(
sentence_ids
.
lod
(),
expected_lod
)
self
.
assertEqual
(
sentence_scores
.
lod
(),
expected_lod
)
expected_data
=
np
.
array
(
[
2
,
1
,
0
,
3
,
1
,
0
,
3
,
2
,
1
,
5
,
4
,
3
,
2
,
4
,
4
,
3
,
6
,
5
,
4
],
"int64"
)
[
0
,
2
,
3
,
1
,
0
,
2
,
1
,
0
,
4
,
5
,
3
,
5
,
0
,
4
,
5
,
3
,
1
],
"int64"
)
self
.
assertTrue
(
np
.
array_equal
(
np
.
array
(
sentence_ids
),
expected_data
))
self
.
assertTrue
(
np
.
array_equal
(
np
.
array
(
sentence_scores
),
expected_data
))
...
...
python/paddle/fluid/tests/unittests/test_beam_search_op.py
浏览文件 @
163b5e57
...
...
@@ -26,9 +26,12 @@ def create_tensor(scope, name, np_data):
class
BeamSearchOpTester
(
unittest
.
TestCase
):
"""unittest of beam_search_op"""
def
setUp
(
self
):
self
.
scope
=
core
.
Scope
()
self
.
_create_ids
()
self
.
_create_pre_scores
()
self
.
_create_scores
()
self
.
_create_pre_ids
()
self
.
scope
.
var
(
'selected_ids'
)
...
...
@@ -37,7 +40,8 @@ class BeamSearchOpTester(unittest.TestCase):
def
test_run
(
self
):
op
=
Operator
(
'beam_search'
,
pre_ids
=
"pre_ids"
,
pre_ids
=
'pre_ids'
,
pre_scores
=
'pre_scores'
,
ids
=
'ids'
,
scores
=
'scores'
,
selected_ids
=
'selected_ids'
,
...
...
@@ -47,19 +51,31 @@ class BeamSearchOpTester(unittest.TestCase):
end_id
=
0
,
)
op
.
run
(
self
.
scope
,
core
.
CPUPlace
())
selected_ids
=
self
.
scope
.
find_var
(
"selected_ids"
).
get_tensor
()
print
'selected_ids'
,
np
.
array
(
selected_ids
)
print
'lod'
,
selected_ids
.
recursive_sequence_lengths
()
selected_scores
=
self
.
scope
.
find_var
(
"selected_scores"
).
get_tensor
()
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
selected_ids
),
np
.
array
([
4
,
2
,
3
,
8
])[:,
np
.
newaxis
]))
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
selected_scores
),
np
.
array
([
0.5
,
0.6
,
0.9
,
0.7
])[:,
np
.
newaxis
]))
self
.
assertEqual
(
selected_ids
.
lod
(),
[[
0L
,
2L
,
4L
],
[
0L
,
1L
,
2L
,
3L
,
4L
]])
def
_create_pre_ids
(
self
):
np_data
=
np
.
array
([[
1
,
2
,
3
,
4
]],
dtype
=
'int64'
)
tensor
=
create_tensor
(
self
.
scope
,
"pre_ids"
,
np_data
)
tensor
=
create_tensor
(
self
.
scope
,
'pre_ids'
,
np_data
)
def
_create_pre_scores
(
self
):
np_data
=
np
.
array
([[
0.1
,
0.2
,
0.3
,
0.4
]],
dtype
=
'float32'
)
tensor
=
create_tensor
(
self
.
scope
,
'pre_scores'
,
np_data
)
def
_create_ids
(
self
):
self
.
lod
=
[[
1
,
3
],
[
1
,
1
,
1
,
1
]]
self
.
lod
=
[[
0
,
2
,
4
],
[
0
,
1
,
2
,
3
,
4
]]
np_data
=
np
.
array
(
[[
4
,
2
,
5
],
[
2
,
1
,
3
],
[
3
,
5
,
2
],
[
8
,
2
,
1
]],
dtype
=
'int64'
)
tensor
=
create_tensor
(
self
.
scope
,
"ids"
,
np_data
)
tensor
.
set_
recursive_sequence_lengths
(
self
.
lod
)
tensor
.
set_
lod
(
self
.
lod
)
def
_create_scores
(
self
):
np_data
=
np
.
array
(
...
...
@@ -71,7 +87,7 @@ class BeamSearchOpTester(unittest.TestCase):
],
dtype
=
'float32'
)
tensor
=
create_tensor
(
self
.
scope
,
"scores"
,
np_data
)
tensor
.
set_
recursive_sequence_lengths
(
self
.
lod
)
tensor
.
set_
lod
(
self
.
lod
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录