Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
15180e85
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
15180e85
编写于
2月 21, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove some code
上级
297c6a01
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
0 addition
and
92 deletion
+0
-92
paddle/data_converter_test.py
paddle/data_converter_test.py
+0
-92
未找到文件。
paddle/data_converter_test.py
已删除
100644 → 0
浏览文件 @
297c6a01
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
py_paddle.swig_paddle
as
api
import
numpy
as
np
import
paddle.trainer.PyDataProvider2
as
dp2
from
paddle.v2.data_converter
import
DataConverter
class
DataConverterTest
(
unittest
.
TestCase
):
def
dense_reader
(
self
,
shape
):
data
=
np
.
random
.
random
(
shape
)
return
data
def
sparse_binary_reader
(
self
,
high
,
size_limit
,
batch_size
,
non_empty
=
False
):
data
=
[]
for
i
in
xrange
(
batch_size
):
num
=
np
.
random
.
randint
(
size_limit
)
# num could be 0
while
non_empty
and
num
==
0
:
num
=
np
.
random
.
randint
(
size_limit
)
data
.
append
(
np
.
random
.
randint
(
high
,
size
=
num
).
tolist
())
return
data
def
test_dense_vector
(
self
):
def
compare
(
input
):
converter
=
DataConverter
([(
'image'
,
dp2
.
dense_vector
(
784
))])
arg
=
converter
([
input
],
{
'image'
:
0
})
output
=
arg
.
getSlotValue
(
0
).
copyToNumpyMat
()
input
=
np
.
array
(
input
,
dtype
=
'float32'
)
self
.
assertAlmostEqual
(
input
.
all
(),
output
.
all
())
# test numpy array
data
=
self
.
dense_reader
(
shape
=
[
32
,
784
])
compare
(
data
)
# test list
compare
(
data
.
tolist
())
#def test_sparse_binary(self):
# dim = 100000
# data = self.sparse_binary_reader(dim, 5, 2)
# converter = DataConverter([('input', dp2.sparse_binary_vector(dim))])
# arg = converter([data], {'input':0})
# output = arg.getSlotValue(0)
#def test_sparse(self):
# dim = 100000
# v = self.sparse_binary_reader(dim, 5, 2)
# w = []
# for dat in data:
# x = self.dense_reader(shape=[1, len(dat)])
# w.append(x.tolist())
# data = []
# for each in zip(v, w):
# data.append(zip(each[0], each[1]))
#
# converter = DataConverter([('input', dp2.sparse_binary_vector(dim))])
# arg = converter([data], {'input':0})
# output = arg.getSlotValue(0)
def
test_integer
(
self
):
dim
=
100
index
=
np
.
random
.
randint
(
dim
,
size
=
32
)
print
index
converter
=
DataConverter
([(
'input'
,
dp2
.
integer_value
(
dim
))])
arg
=
converter
([
index
],
{
'input'
:
0
})
print
arg
.
getSlotValue
(
0
)
output
=
arg
.
getSlotValue
(
0
).
copyToNumpyArray
()
print
'output='
,
output
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录