Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
149f76e6
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
149f76e6
编写于
3月 24, 2021
作者:
L
liym27
提交者:
GitHub
3月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] Support npu kernel for op elementwise_floordiv (#31822)
上级
b3446670
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
136 addition
and
20 deletion
+136
-20
paddle/fluid/operators/elementwise/elementwise_div_op_npu.cc
paddle/fluid/operators/elementwise/elementwise_div_op_npu.cc
+17
-20
paddle/fluid/operators/elementwise/elementwise_floordiv_op_npu.cc
...luid/operators/elementwise/elementwise_floordiv_op_npu.cc
+52
-0
python/paddle/fluid/tests/unittests/npu/test_elementwise_floordiv_op_npu.py
...d/tests/unittests/npu/test_elementwise_floordiv_op_npu.py
+67
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_div_op_npu.cc
浏览文件 @
149f76e6
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#ifdef PADDLE_WITH_ASCEND_CL
#include <memory>
#include <memory>
#include <string>
#include <string>
...
@@ -61,13 +60,13 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
...
@@ -61,13 +60,13 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
auto
place
=
ctx
.
GetPlace
();
auto
place
=
ctx
.
GetPlace
();
auto
stream
=
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
.
stream
();
Tensor
y_power
(
y
->
type
());
Tensor
y_power
(
y
->
type
());
y_power
.
mutable_data
<
T
>
(
y
->
dims
(),
place
);
y_power
.
mutable_data
<
T
>
(
y
->
dims
(),
place
);
auto
y_power_runner
=
NpuOpRunner
(
"Power"
,
{
*
y
},
auto
y_power_runner
=
NpuOpRunner
(
"Power"
,
{
*
y
},
{
y_power
},
{
y_power
},
{{
"power"
,
static_cast
<
float
>
(
-
1
)}});
{{
"power"
,
static_cast
<
float
>
(
-
1
)}});
y_power_runner
.
Run
(
stream
);
y_power_runner
.
Run
(
stream
);
if
(
dx
)
{
if
(
dx
)
{
...
@@ -75,32 +74,33 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
...
@@ -75,32 +74,33 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
Tensor
tensor_zeros
(
x
->
type
());
Tensor
tensor_zeros
(
x
->
type
());
tensor_zeros
.
mutable_data
<
T
>
(
x
->
dims
(),
place
);
tensor_zeros
.
mutable_data
<
T
>
(
x
->
dims
(),
place
);
auto
tensor_zeros_runner
=
NpuOpRunner
(
"ZerosLike"
,
{
*
x
},
auto
tensor_zeros_runner
=
{
tensor_zeros
},
{});
NpuOpRunner
(
"ZerosLike"
,
{
*
x
},
{
tensor_zeros
},
{});
tensor_zeros_runner
.
Run
(
stream
);
tensor_zeros_runner
.
Run
(
stream
);
Tensor
x_zero
(
paddle
::
framework
::
proto
::
VarType
::
BOOL
);
Tensor
x_zero
(
paddle
::
framework
::
proto
::
VarType
::
BOOL
);
x_zero
.
mutable_data
<
bool
>
(
x
->
dims
(),
place
);
x_zero
.
mutable_data
<
bool
>
(
x
->
dims
(),
place
);
auto
x_zero_runner
=
NpuOpRunner
(
"Equal"
,
{
*
x
,
tensor_zeros
},
auto
x_zero_runner
=
{
x_zero
},
{});
NpuOpRunner
(
"Equal"
,
{
*
x
,
tensor_zeros
},
{
x_zero
},
{});
x_zero_runner
.
Run
(
stream
);
x_zero_runner
.
Run
(
stream
);
Tensor
x_nozero
(
paddle
::
framework
::
proto
::
VarType
::
BOOL
);
Tensor
x_nozero
(
paddle
::
framework
::
proto
::
VarType
::
BOOL
);
x_nozero
.
mutable_data
<
bool
>
(
x
->
dims
(),
place
);
x_nozero
.
mutable_data
<
bool
>
(
x
->
dims
(),
place
);
auto
x_nozero_runner
=
NpuOpRunner
(
"LogicalNot"
,
{
x_zero
},
auto
x_nozero_runner
=
{
x_nozero
},
{});
NpuOpRunner
(
"LogicalNot"
,
{
x_zero
},
{
x_nozero
},
{});
x_nozero_runner
.
Run
(
stream
);
x_nozero_runner
.
Run
(
stream
);
Tensor
x_nozero_f
(
x
->
type
());
Tensor
x_nozero_f
(
x
->
type
());
x_nozero_f
.
mutable_data
<
T
>
(
x
->
dims
(),
place
);
x_nozero_f
.
mutable_data
<
T
>
(
x
->
dims
(),
place
);
auto
x_nozero_f_runner
=
NpuOpRunner
(
"Cast"
,
{
x_nozero
},
auto
x_nozero_f_runner
=
{
x_nozero_f
},
{{
"dst_type"
,
static_cast
<
int32_t
>
(
0
)}});
NpuOpRunner
(
"Cast"
,
{
x_nozero
},
{
x_nozero_f
},
{{
"dst_type"
,
static_cast
<
int32_t
>
(
0
)}});
x_nozero_f_runner
.
Run
(
stream
);
x_nozero_f_runner
.
Run
(
stream
);
Tensor
x_grad_w
(
x
->
type
());
Tensor
x_grad_w
(
x
->
type
());
x_grad_w
.
mutable_data
<
T
>
(
x
->
dims
(),
place
);
x_grad_w
.
mutable_data
<
T
>
(
x
->
dims
(),
place
);
auto
x_grad_w_runner
=
NpuOpRunner
(
"Mul"
,
{
x_nozero_f
,
y_power
},
auto
x_grad_w_runner
=
{
x_grad_w
},
{});
NpuOpRunner
(
"Mul"
,
{
x_nozero_f
,
y_power
},
{
x_grad_w
},
{});
x_grad_w_runner
.
Run
(
stream
);
x_grad_w_runner
.
Run
(
stream
);
auto
x_grad_runner
=
NpuOpRunner
(
"Mul"
,
{
x_grad_w
,
*
dout
},
{
*
dx
},
{});
auto
x_grad_runner
=
NpuOpRunner
(
"Mul"
,
{
x_grad_w
,
*
dout
},
{
*
dx
},
{});
...
@@ -112,14 +112,12 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
...
@@ -112,14 +112,12 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
Tensor
neg_out
(
y
->
type
());
Tensor
neg_out
(
y
->
type
());
neg_out
.
mutable_data
<
T
>
(
y
->
dims
(),
place
);
neg_out
.
mutable_data
<
T
>
(
y
->
dims
(),
place
);
auto
neg_out_runner
=
NpuOpRunner
(
"Neg"
,
{
*
out
},
auto
neg_out_runner
=
NpuOpRunner
(
"Neg"
,
{
*
out
},
{
neg_out
},
{});
{
neg_out
},
{});
neg_out_runner
.
Run
(
stream
);
neg_out_runner
.
Run
(
stream
);
Tensor
y_grad_w
(
y
->
type
());
Tensor
y_grad_w
(
y
->
type
());
y_grad_w
.
mutable_data
<
T
>
(
y
->
dims
(),
place
);
y_grad_w
.
mutable_data
<
T
>
(
y
->
dims
(),
place
);
auto
y_grad_w_runner
=
NpuOpRunner
(
"Div"
,
{
neg_out
,
*
y
},
auto
y_grad_w_runner
=
NpuOpRunner
(
"Div"
,
{
neg_out
,
*
y
},
{
y_grad_w
},
{});
{
y_grad_w
},
{});
y_grad_w_runner
.
Run
(
stream
);
y_grad_w_runner
.
Run
(
stream
);
auto
y_grad_runner
=
NpuOpRunner
(
"Mul"
,
{
y_grad_w
,
*
dout
},
{
*
dy
},
{});
auto
y_grad_runner
=
NpuOpRunner
(
"Mul"
,
{
y_grad_w
,
*
dout
},
{
*
dy
},
{});
...
@@ -143,4 +141,3 @@ REGISTER_OP_NPU_KERNEL(
...
@@ -143,4 +141,3 @@ REGISTER_OP_NPU_KERNEL(
ops
::
ElementwiseDivGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
ElementwiseDivGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
ElementwiseDivGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
ops
::
ElementwiseDivGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_floordiv_op_npu.cc
0 → 100644
浏览文件 @
149f76e6
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
ElementwiseFloorDivNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
auto
runner
=
NpuOpRunner
(
"FloorDiv"
,
{
*
x
,
*
y
},
{
*
out
},
{});
runner
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
elementwise_floordiv
,
ops
::
ElementwiseFloorDivNPUKernel
<
int
>
,
ops
::
ElementwiseFloorDivNPUKernel
<
int64_t
>
);
python/paddle/fluid/tests/unittests/npu/test_elementwise_floordiv_op_npu.py
0 → 100644
浏览文件 @
149f76e6
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestElementwiseFloorDiv
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_floordiv"
self
.
set_npu
()
self
.
init_dtype
()
self
.
init_input_output
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
1
,
1000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
1000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
floor_divide
(
self
.
x
,
self
.
y
)
def
init_dtype
(
self
):
self
.
dtype
=
"int64"
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestElementwiseFloorDiv2
(
TestElementwiseFloorDiv
):
def
init_dtype
(
self
):
self
.
dtype
=
"int32"
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录