未验证 提交 13f2b1e3 编写于 作者: X xiongkun 提交者: GitHub

[phi] transfer accuracy op and pass the unittests (#39982)

* transfer accuracy op and pass the ci

* remove header file

* fix code

* fix code

* fix

* fix
上级 3c536f2e
......@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/metrics/accuracy_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
......@@ -123,13 +123,10 @@ with the input Out(Inference).
} // namespace operators
} // namespace paddle
// FIXME(typhoonzero): types of T is for infernece data.
// label data is always int.
namespace ops = paddle::operators;
REGISTER_OPERATOR(
accuracy, ops::AccuracyOp, ops::AccuracyOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
// FIXME(typhoonzero): types of T is for infernece data.
// label data is always int.
REGISTER_OP_CPU_KERNEL(accuracy,
ops::AccuracyKernel<paddle::platform::CPUPlace, float>,
ops::AccuracyKernel<paddle::platform::CPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/execution_policy.h>
#include <thrust/reduce.h>
#include "paddle/fluid/operators/metrics/accuracy_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
template <int BlockSize>
__global__ void AccuracyCudaKernel(const int N, const int D,
const int64_t* Xdata,
const int64_t* labeldata, int* correct_data,
float* accuracy, int* total_data) {
int count = 0;
__shared__ int total[BlockSize];
// support only 1 block
for (int i = threadIdx.x; i < (N); i += BlockSize) {
for (int j = 0; j < D; ++j) {
if (Xdata[i * D + j] == labeldata[i]) {
++count;
break;
}
}
}
total[threadIdx.x] = count;
__syncthreads();
// reduce the count with init value 0, and output accuracy.
#ifdef PADDLE_WITH_CUDA
int result = thrust::reduce(thrust::device, total, total + BlockSize, 0);
#else
// HIP thrust::reduce not support __device__
for (int s = BlockSize / 2; s > 0; s >>= 1) {
if (threadIdx.x < s) {
total[threadIdx.x] += total[threadIdx.x + s];
}
__syncthreads();
}
int result = total[0];
#endif
if (threadIdx.x == 0) {
*correct_data = result;
*accuracy = static_cast<float>(result) / static_cast<float>(N);
*total_data = N;
}
}
template <typename T>
class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* inference = ctx.Input<Tensor>("Out");
auto* indices = ctx.Input<Tensor>("Indices");
auto* label = ctx.Input<Tensor>("Label");
auto* accuracy = ctx.Output<Tensor>("Accuracy");
auto* correct = ctx.Output<Tensor>("Correct");
auto* total = ctx.Output<Tensor>("Total");
// FIXME(typhoonzero): only support indices currently
// if add support for output values, how to detect the data type?
const int64_t* indices_data = indices->data<int64_t>();
const int64_t* label_data = label->data<int64_t>();
int* correct_data = correct->mutable_data<int>(ctx.GetPlace());
int* total_data = total->mutable_data<int>(ctx.GetPlace());
float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());
int num_samples = static_cast<int>(inference->dims()[0]);
size_t infer_width = inference->dims()[1];
auto stream = ctx.cuda_device_context().stream();
platform::GpuMemsetAsync(accuracy_data, 0, sizeof(float), stream);
if (num_samples == 0) {
return;
}
AccuracyCudaKernel<
PADDLE_CUDA_NUM_THREADS><<<1, PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
num_samples, infer_width, indices_data, label_data, correct_data,
accuracy_data, total_data);
}
};
} // namespace operators
} // namespace paddle
// FIXME(typhoonzero): types of T is for inference data.
// label data is always int64
REGISTER_OP_CUDA_KERNEL(
accuracy, paddle::operators::AccuracyOpCUDAKernel<float>,
paddle::operators::AccuracyOpCUDAKernel<double>,
paddle::operators::AccuracyOpCUDAKernel<paddle::platform::float16>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class AccuracyKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* inference = ctx.Input<Tensor>("Out");
auto* indices = ctx.Input<Tensor>("Indices");
auto* label = ctx.Input<Tensor>("Label");
auto* accuracy = ctx.Output<Tensor>("Accuracy");
auto* correct = ctx.Output<Tensor>("Correct");
auto* total = ctx.Output<Tensor>("Total");
int* correct_data = correct->mutable_data<int>(ctx.GetPlace());
int* total_data = total->mutable_data<int>(ctx.GetPlace());
float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());
const int64_t* indices_data = indices->data<int64_t>();
const int64_t* label_data = label->data<int64_t>();
size_t num_samples = inference->dims()[0];
size_t class_dim = inference->dims()[1];
*accuracy_data = 0.0f;
if (num_samples == 0) {
return;
}
int num_correct = 0;
// assume inference is already the topk of the output
for (size_t i = 0; i < num_samples; ++i) {
PADDLE_ENFORCE_GE(
label_data[i], 0,
platform::errors::InvalidArgument(
"label of AccuracyOp must >= 0, But received label[%d] is %d", i,
label_data[i]));
for (size_t j = 0; j < class_dim; ++j) {
if (indices_data[i * class_dim + j] == label_data[i]) {
++num_correct;
break;
}
}
}
*correct_data = num_correct;
*total_data = num_samples;
*accuracy_data =
static_cast<float>(num_correct) / static_cast<float>(num_samples);
}
};
} // namespace operators
} // namespace paddle
......@@ -12,7 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/metrics/accuracy_op.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
......
......@@ -13,7 +13,7 @@ limitations under the License. */
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/metrics/accuracy_op.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
namespace paddle {
......
......@@ -14,12 +14,14 @@ limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/metrics/accuracy_op.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
namespace paddle {
namespace operators {
using Tensor = paddle::framework::Tensor;
template <typename DeviceContext, typename T>
class AccuracyXPUKernel : public framework::OpKernel<T> {
public:
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void AccuracyRawKernel(const Context& dev_ctx,
const DenseTensor& out,
const DenseTensor& indices,
const DenseTensor& label,
DenseTensor* accuracy,
DenseTensor* correct,
DenseTensor* total);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/accuracy_kernel.h"
#include <algorithm>
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void AccuracyRawKernel(const Context& dev_ctx,
const DenseTensor& inference,
const DenseTensor& indices,
const DenseTensor& label,
DenseTensor* accuracy,
DenseTensor* correct,
DenseTensor* total) {
int* correct_data = dev_ctx.template Alloc<int>(correct);
int* total_data = dev_ctx.template Alloc<int>(total);
float* accuracy_data = dev_ctx.template Alloc<float>(accuracy);
const int64_t* indices_data = indices.data<int64_t>();
const int64_t* label_data = label.data<int64_t>();
size_t num_samples = inference.dims()[0];
size_t class_dim = inference.dims()[1];
*accuracy_data = 0.0f;
if (num_samples == 0) {
return;
}
int num_correct = 0;
// assume inference is already the topk of the output
for (size_t i = 0; i < num_samples; ++i) {
PADDLE_ENFORCE_GE(
label_data[i],
0,
phi::errors::InvalidArgument(
"label of AccuracyOp must >= 0, But received label[%d] is %d",
i,
label_data[i]));
for (size_t j = 0; j < class_dim; ++j) {
if (indices_data[i * class_dim + j] == label_data[i]) {
++num_correct;
break;
}
}
}
*correct_data = num_correct;
*total_data = num_samples;
*accuracy_data =
static_cast<float>(num_correct) / static_cast<float>(num_samples);
}
} // namespace phi
// TODO(add supported dtype.)
PD_REGISTER_KERNEL(
accuracy, CPU, ALL_LAYOUT, phi::AccuracyRawKernel, float, double) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/accuracy_kernel.h"
#include <thrust/execution_policy.h>
#include <thrust/reduce.h>
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
using paddle::platform::PADDLE_CUDA_NUM_THREADS;
template <int BlockSize>
__global__ void AccuracyCudaKernel(const int N,
const int D,
const int64_t* Xdata,
const int64_t* labeldata,
int* correct_data,
float* accuracy,
int* total_data) {
int count = 0;
__shared__ int total[BlockSize];
// support only 1 block
for (int i = threadIdx.x; i < (N); i += BlockSize) {
for (int j = 0; j < D; ++j) {
if (Xdata[i * D + j] == labeldata[i]) {
++count;
break;
}
}
}
total[threadIdx.x] = count;
__syncthreads();
// reduce the count with init value 0, and output accuracy.
#ifdef PADDLE_WITH_CUDA
int result = thrust::reduce(thrust::device, total, total + BlockSize, 0);
#else
// HIP thrust::reduce not support __device__
for (int s = BlockSize / 2; s > 0; s >>= 1) {
if (threadIdx.x < s) {
total[threadIdx.x] += total[threadIdx.x + s];
}
__syncthreads();
}
int result = total[0];
#endif
if (threadIdx.x == 0) {
*correct_data = result;
*accuracy = static_cast<float>(result) / static_cast<float>(N);
*total_data = N;
}
}
template <typename T, typename Context>
void AccuracyRawKernel(const Context& dev_ctx,
const DenseTensor& inference,
const DenseTensor& indices,
const DenseTensor& label,
DenseTensor* accuracy,
DenseTensor* correct,
DenseTensor* total) {
// FIXME(typhoonzero): only support indices currently
// if add support for output values, how to detect the data type?
const int64_t* indices_data = indices.data<int64_t>();
const int64_t* label_data = label.data<int64_t>();
int* correct_data = dev_ctx.template Alloc<int>(correct);
int* total_data = dev_ctx.template Alloc<int>(total);
float* accuracy_data = dev_ctx.template Alloc<float>(accuracy);
int num_samples = static_cast<int>(inference.dims()[0]);
size_t infer_width = inference.dims()[1];
auto stream = dev_ctx.stream();
phi::backends::gpu::GpuMemsetAsync(accuracy_data, 0, sizeof(float), stream);
if (num_samples == 0) {
return;
}
AccuracyCudaKernel<
PADDLE_CUDA_NUM_THREADS><<<1, PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
num_samples,
infer_width,
indices_data,
label_data,
correct_data,
accuracy_data,
total_data);
}
} // namespace phi
// FIXME(typhoonzero): types of T is for inference data.
// label data is always int64
PD_REGISTER_KERNEL(accuracy,
GPU,
ALL_LAYOUT,
phi::AccuracyRawKernel,
phi::dtype::float16,
float,
double) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册