Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
13a22a37
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
13a22a37
编写于
12月 02, 2020
作者:
L
Leo Chen
提交者:
GitHub
12月 02, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix shape of tile_grad op (#29289)
上级
be3777a5
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
11 addition
and
7 deletion
+11
-7
paddle/fluid/operators/tile_op.cc
paddle/fluid/operators/tile_op.cc
+1
-0
paddle/fluid/operators/tile_op.h
paddle/fluid/operators/tile_op.h
+10
-7
未找到文件。
paddle/fluid/operators/tile_op.cc
浏览文件 @
13a22a37
...
@@ -167,6 +167,7 @@ class TileGradOp : public framework::OperatorWithKernel {
...
@@ -167,6 +167,7 @@ class TileGradOp : public framework::OperatorWithKernel {
framework
::
GradVarName
(
"Out"
),
"TileGrad"
);
framework
::
GradVarName
(
"Out"
),
"TileGrad"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
vector
<
int
>
repeat_times
=
std
::
vector
<
int
>
repeat_times
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"repeat_times"
);
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"repeat_times"
);
if
(
repeat_times
.
size
()
==
0
)
{
if
(
repeat_times
.
size
()
==
0
)
{
...
...
paddle/fluid/operators/tile_op.h
浏览文件 @
13a22a37
...
@@ -186,9 +186,9 @@ template <typename DeviceContext, typename T>
...
@@ -186,9 +186,9 @@ template <typename DeviceContext, typename T>
class
TileGradKernel
:
public
framework
::
OpKernel
<
T
>
{
class
TileGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
repeat_times
=
get_repeat_times
(
context
);
auto
repeat_times
=
get_repeat_times
(
context
);
auto
x_dims
=
in0
->
dims
();
auto
x_dims
=
x
->
dims
();
auto
vec_in_dims
=
framework
::
vectorize
<
int
>
(
x_dims
);
auto
vec_in_dims
=
framework
::
vectorize
<
int
>
(
x_dims
);
if
(
repeat_times
.
size
()
<
vec_in_dims
.
size
())
{
if
(
repeat_times
.
size
()
<
vec_in_dims
.
size
())
{
int
diff
=
vec_in_dims
.
size
()
-
repeat_times
.
size
();
int
diff
=
vec_in_dims
.
size
()
-
repeat_times
.
size
();
...
@@ -220,11 +220,13 @@ class TileGradKernel : public framework::OpKernel<T> {
...
@@ -220,11 +220,13 @@ class TileGradKernel : public framework::OpKernel<T> {
}
}
// no need reduce, just copy
// no need reduce, just copy
if
(
just_copy
)
{
if
(
just_copy
)
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dout
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out0
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
());
framework
::
TensorCopy
(
*
in0
,
context
.
GetPlace
(),
context
.
device_context
(),
framework
::
TensorCopy
(
*
dout
,
context
.
GetPlace
(),
context
.
device_context
(),
out0
);
dx
);
// TensorCopy may change the dims of dx
dx
->
Resize
(
x_dims
);
}
else
{
}
else
{
PADDLE_ENFORCE_GE
(
dims
,
1
,
PADDLE_ENFORCE_GE
(
dims
,
1
,
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
...
@@ -261,6 +263,7 @@ class TileGradKernel : public framework::OpKernel<T> {
...
@@ -261,6 +263,7 @@ class TileGradKernel : public framework::OpKernel<T> {
for
(
size_t
i
=
0
;
i
<
reduce_size
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
reduce_size
;
++
i
)
{
reduce_dims
[
i
]
=
reduce_dims_vec
[
i
];
reduce_dims
[
i
]
=
reduce_dims_vec
[
i
];
}
}
auto
out_grad
=
EigenVector
<
T
>::
Flatten
(
*
in0
);
auto
out_grad
=
EigenVector
<
T
>::
Flatten
(
*
in0
);
x_grad
.
device
(
x_grad
.
device
(
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
())
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
())
=
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录