提交 131bd8e8 编写于 作者: S sandyhouse

accumulate gradients instead of dequeueN, test=develop

上级 1e4e23a8
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
// limitations under the License. // limitations under the License.
#if defined(PADDLE_WITH_NCCL) #if defined(PADDLE_WITH_NCCL)
#include <map>
#include "paddle/fluid/framework/data_feed_factory.h" #include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/device_worker_factory.h" #include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h" #include "paddle/fluid/framework/trainer.h"
...@@ -44,7 +45,6 @@ void PipelineTrainer::Initialize(const TrainerDesc& trainer_desc, ...@@ -44,7 +45,6 @@ void PipelineTrainer::Initialize(const TrainerDesc& trainer_desc,
"must be 1 now, but the value you give is %d.", "must be 1 now, but the value you give is %d.",
num_readers)); num_readers));
auto* reader = readers[0]; auto* reader = readers[0];
feed_var_names_ = reader->GetUseSlotAlias();
workers_.resize(section_num_); workers_.resize(section_num_);
for (int i = 0; i < section_num_; ++i) { for (int i = 0; i < section_num_; ++i) {
...@@ -123,27 +123,38 @@ void PipelineTrainer::CopyParameters(int section_id, int microbatch_id, ...@@ -123,27 +123,38 @@ void PipelineTrainer::CopyParameters(int section_id, int microbatch_id,
const ProgramDesc& program, const ProgramDesc& program,
const platform::Place& place) { const platform::Place& place) {
auto& global_block = program.Block(0); auto& global_block = program.Block(0);
std::map<std::string, int> param_map;
for (auto& var : global_block.AllVars()) { for (auto& var : global_block.AllVars()) {
int is_feed_var = if (var->Persistable()) {
std::count(feed_var_names_.begin(), feed_var_names_.end(), var->Name()); param_map[var->Name()] = 1;
}
}
for (auto& var : global_block.AllVars()) {
bool is_grad = false;
bool is_param_grad = false;
size_t pos = 0;
if ((pos = var->Name().find(kGradVarSuffix)) != std::string::npos) {
is_grad = true;
auto prefix_name = var->Name().substr(0, pos);
if (param_map.find(prefix_name) != param_map.end()) {
is_param_grad = true;
}
}
VLOG(3) << "Var name: " << var->Name(); VLOG(3) << "Var name: " << var->Name();
if ((var->Persistable() || is_feed_var) && microbatch_id == 0) { if ((var->Persistable() || is_grad) && microbatch_id == 0) {
if (is_feed_var) { auto* ptr = root_scope_->FindVar(var->Name());
auto* new_ptr = minibatch_scopes_[section_id]->Var(var->Name()); auto* new_ptr = minibatch_scopes_[section_id]->Var(var->Name());
VLOG(3) << "data name: " << var->Name() << ", ptr: " << new_ptr; VLOG(3) << "Create persistable var " << var->Name() << " for minibatch "
InitializeVariable(new_ptr, var->GetType()); << section_id << ", which pointer is " << new_ptr;
} else { InitializeVariable(new_ptr, var->GetType());
auto* ptr = root_scope_->FindVar(var->Name()); if (!var->Persistable() && !is_param_grad) {
auto* new_ptr = minibatch_scopes_[section_id]->Var(var->Name()); continue;
VLOG(3) << "Create persistable var " << var->Name() << " for minibatch "
<< section_id << ", which pointer is " << new_ptr;
InitializeVariable(new_ptr, var->GetType());
const LoDTensor& root_tensor = ptr->Get<LoDTensor>();
LoDTensor* minibatch_tensor = new_ptr->GetMutable<LoDTensor>();
TensorCopy(*static_cast<const Tensor*>(&root_tensor), place,
static_cast<Tensor*>(minibatch_tensor));
} }
} else if (!var->Persistable() && !is_feed_var) { const LoDTensor& root_tensor = ptr->Get<LoDTensor>();
LoDTensor* minibatch_tensor = new_ptr->GetMutable<LoDTensor>();
TensorCopy(*static_cast<const Tensor*>(&root_tensor), place,
static_cast<Tensor*>(minibatch_tensor));
} else if (!var->Persistable() && !is_grad) {
auto* ptr = auto* ptr =
microbatch_scopes_[section_id][microbatch_id]->Var(var->Name()); microbatch_scopes_[section_id][microbatch_id]->Var(var->Name());
VLOG(3) << "Create variable " << var->Name() << " for section " VLOG(3) << "Create variable " << var->Name() << " for section "
......
...@@ -109,6 +109,8 @@ void SectionWorker::TrainFiles() { ...@@ -109,6 +109,8 @@ void SectionWorker::TrainFiles() {
if (thread_id_ == 0) { if (thread_id_ == 0) {
while (true) { while (true) {
// Start a minibatch. // Start a minibatch.
// real number of microbatches run
int real_microbatch_num = 0;
batch_timer.Start(); batch_timer.Start();
for (int i = 0; i < num_microbatches_; ++i) { for (int i = 0; i < num_microbatches_; ++i) {
try { try {
...@@ -141,18 +143,20 @@ void SectionWorker::TrainFiles() { ...@@ -141,18 +143,20 @@ void SectionWorker::TrainFiles() {
VLOG(3) << "called notify all"; VLOG(3) << "called notify all";
thread_condition.notify_all(); thread_condition.notify_all();
VLOG(0) << "EOF encountered"; VLOG(0) << "EOF encountered";
return; break;
} }
if (i == 0) { {
real_microbatch_num += 1;
batch_id_ += 1;
VLOG(3) << "called notify all"; VLOG(3) << "called notify all";
std::unique_lock<std::mutex> lk(thread_mutex); std::unique_lock<std::mutex> lk(thread_mutex);
batch_id_ += 1;
thread_condition.notify_all(); thread_condition.notify_all();
} }
} }
dev_ctx_->Wait(); dev_ctx_->Wait();
VLOG(0) << "real_microbatch_num for thread 0 " << real_microbatch_num;
// backward pass // backward pass
for (int i = 0; i < num_microbatches_; ++i) { for (int i = 0; i < real_microbatch_num; ++i) {
for (auto& op : ops_) { for (auto& op : ops_) {
int op_role = op->Attr<int>(std::string("op_role")); int op_role = op->Attr<int>(std::string("op_role"));
if (op_role == static_cast<int>(OpRole::kBackward) || if (op_role == static_cast<int>(OpRole::kBackward) ||
...@@ -169,6 +173,11 @@ void SectionWorker::TrainFiles() { ...@@ -169,6 +173,11 @@ void SectionWorker::TrainFiles() {
} }
} }
dev_ctx_->Wait(); dev_ctx_->Wait();
if (real_microbatch_num == 0) {
batch_timer.Pause();
VLOG(0) << "batch time: " << batch_timer.ElapsedUS();
return;
}
// update pass // update pass
for (auto& op : ops_) { for (auto& op : ops_) {
int op_role = op->Attr<int>(std::string("op_role")); int op_role = op->Attr<int>(std::string("op_role"));
...@@ -188,30 +197,32 @@ void SectionWorker::TrainFiles() { ...@@ -188,30 +197,32 @@ void SectionWorker::TrainFiles() {
} }
} else { } else {
while (true) { while (true) {
{
PADDLE_ENFORCE_LE(
local_batch_id_, batch_id_,
platform::errors::InvalidArgument(
"local_batch_id_ (%d) must be less than or equal to "
"batch_id_ (%d)",
local_batch_id_, batch_id_));
std::unique_lock<std::mutex> lk(thread_mutex);
if (local_batch_id_ == batch_id_ && !threads_completed) {
thread_condition.wait(lk);
}
VLOG(3) << "thread " << thread_id_ << " local_batch_id_ "
<< local_batch_id_ << " batch_id_ " << batch_id_;
if (threads_completed) {
VLOG(3) << "thread " << thread_id_ << " completed.";
lk.unlock();
threads_completed = false;
return;
}
lk.unlock();
local_batch_id_ += 1;
}
// forward pass: // forward pass:
int real_microbatch_num = 0;
for (int i = 0; i < num_microbatches_; ++i) { for (int i = 0; i < num_microbatches_; ++i) {
{
PADDLE_ENFORCE_LE(
local_batch_id_, batch_id_,
platform::errors::InvalidArgument(
"local_batch_id_ (%d) must be less than or equal to "
"batch_id_ (%d)",
local_batch_id_, batch_id_));
std::unique_lock<std::mutex> lk(thread_mutex);
if (local_batch_id_ == batch_id_ && !threads_completed) {
thread_condition.wait(lk);
}
VLOG(3) << "thread " << thread_id_ << " local_batch_id_ "
<< local_batch_id_ << " batch_id_ " << batch_id_;
if (threads_completed) {
VLOG(3) << "thread " << thread_id_ << " completed.";
lk.unlock();
threads_completed = false;
break;
}
lk.unlock();
local_batch_id_ += 1;
real_microbatch_num += 1;
}
for (auto& op : ops_) { for (auto& op : ops_) {
int op_role = op->Attr<int>(std::string("op_role")); int op_role = op->Attr<int>(std::string("op_role"));
// We run op with op_role = kLRSched only for the first microbatch // We run op with op_role = kLRSched only for the first microbatch
...@@ -237,7 +248,7 @@ void SectionWorker::TrainFiles() { ...@@ -237,7 +248,7 @@ void SectionWorker::TrainFiles() {
} }
dev_ctx_->Wait(); dev_ctx_->Wait();
// backward pass // backward pass
for (int i = 0; i < num_microbatches_; ++i) { for (int i = 0; i < real_microbatch_num; ++i) {
for (auto& op : ops_) { for (auto& op : ops_) {
int op_role = op->Attr<int>(std::string("op_role")); int op_role = op->Attr<int>(std::string("op_role"));
if (op_role == static_cast<int>(OpRole::kBackward) || if (op_role == static_cast<int>(OpRole::kBackward) ||
...@@ -255,6 +266,9 @@ void SectionWorker::TrainFiles() { ...@@ -255,6 +266,9 @@ void SectionWorker::TrainFiles() {
} }
dev_ctx_->Wait(); dev_ctx_->Wait();
// update pass // update pass
if (real_microbatch_num == 0) {
return;
}
for (auto& op : ops_) { for (auto& op : ops_) {
int op_role = op->Attr<int>(std::string("op_role")); int op_role = op->Attr<int>(std::string("op_role"));
if (op_role == static_cast<int>(OpRole::kOptimize)) { if (op_role == static_cast<int>(OpRole::kOptimize)) {
...@@ -324,6 +338,7 @@ void SectionWorker::TrainFilesWithProfiler() { ...@@ -324,6 +338,7 @@ void SectionWorker::TrainFilesWithProfiler() {
while (true) { while (true) {
// Start a minibatch. // Start a minibatch.
batch_timer.Start(); batch_timer.Start();
int real_microbatch_num = 0;
for (int i = 0; i < num_microbatches_; ++i) { for (int i = 0; i < num_microbatches_; ++i) {
try { try {
int op_idx = 0; int op_idx = 0;
...@@ -397,18 +412,19 @@ void SectionWorker::TrainFilesWithProfiler() { ...@@ -397,18 +412,19 @@ void SectionWorker::TrainFilesWithProfiler() {
<< ", mean_time: " << op_total_time[i] / op_count[i]; << ", mean_time: " << op_total_time[i] / op_count[i];
} }
VLOG(0) << "================================"; VLOG(0) << "================================";
return; break;
} }
if (i == 0) { {
VLOG(3) << "called notify all"; VLOG(3) << "called notify all";
std::unique_lock<std::mutex> lk(thread_mutex); std::unique_lock<std::mutex> lk(thread_mutex);
real_microbatch_num += 1;
batch_id_ += 1; batch_id_ += 1;
thread_condition.notify_all(); thread_condition.notify_all();
} }
} }
dev_ctx_->Wait(); dev_ctx_->Wait();
// backward pass // backward pass
for (int i = 0; i < num_microbatches_; ++i) { for (int i = 0; i < real_microbatch_num; ++i) {
int op_idx = 0; int op_idx = 0;
gettimeofday(&micro_start, NULL); gettimeofday(&micro_start, NULL);
for (auto& op : ops_) { for (auto& op : ops_) {
...@@ -460,6 +476,10 @@ void SectionWorker::TrainFilesWithProfiler() { ...@@ -460,6 +476,10 @@ void SectionWorker::TrainFilesWithProfiler() {
} }
} }
dev_ctx_->Wait(); dev_ctx_->Wait();
if (real_microbatch_num == 0) {
batch_timer.Pause();
VLOG(0) << "batch time: " << batch_timer.ElapsedUS();
}
// update pass // update pass
int op_idx = 0; int op_idx = 0;
gettimeofday(&micro_start, NULL); gettimeofday(&micro_start, NULL);
...@@ -526,36 +546,38 @@ void SectionWorker::TrainFilesWithProfiler() { ...@@ -526,36 +546,38 @@ void SectionWorker::TrainFilesWithProfiler() {
cudaEventCreate(&cu_start); cudaEventCreate(&cu_start);
cudaEventCreate(&cu_stop); cudaEventCreate(&cu_stop);
while (true) { while (true) {
{
PADDLE_ENFORCE_LE(
local_batch_id_, batch_id_,
platform::errors::InvalidArgument(
"local_batch_id_ (%d) must be less than or equal to "
"batch_id_ (%d)",
local_batch_id_, batch_id_));
std::unique_lock<std::mutex> lk(thread_mutex);
if (local_batch_id_ == batch_id_ && !threads_completed) {
thread_condition.wait(lk);
}
VLOG(3) << "thread " << thread_id_ << " local_batch_id_ "
<< local_batch_id_ << " batch_id_ " << batch_id_;
if (threads_completed) {
VLOG(3) << "thread " << thread_id_ << " completed.";
lk.unlock();
VLOG(0) << "============timeline============";
for (size_t i = 0; i < ops_.size(); ++i) {
VLOG(0) << "op: " << op_name[i] << ", max_time: " << op_max_time[i]
<< ", min_time: " << op_min_time[i]
<< ", mean_time: " << op_total_time[i] / op_count[i];
}
VLOG(0) << "================================";
return;
}
lk.unlock();
local_batch_id_ += 1;
}
// forward pass: // forward pass:
int real_microbatch_num = 0;
for (int i = 0; i < num_microbatches_; ++i) { for (int i = 0; i < num_microbatches_; ++i) {
{
PADDLE_ENFORCE_LE(
local_batch_id_, batch_id_,
platform::errors::InvalidArgument(
"local_batch_id_ (%d) must be less than or equal to "
"batch_id_ (%d)",
local_batch_id_, batch_id_));
std::unique_lock<std::mutex> lk(thread_mutex);
if (local_batch_id_ == batch_id_ && !threads_completed) {
thread_condition.wait(lk);
}
VLOG(3) << "thread " << thread_id_ << " local_batch_id_ "
<< local_batch_id_ << " batch_id_ " << batch_id_;
if (threads_completed) {
VLOG(3) << "thread " << thread_id_ << " completed.";
lk.unlock();
VLOG(0) << "============timeline============";
for (size_t i = 0; i < ops_.size(); ++i) {
VLOG(0) << "op: " << op_name[i] << ", max_time: " << op_max_time[i]
<< ", min_time: " << op_min_time[i]
<< ", mean_time: " << op_total_time[i] / op_count[i];
}
VLOG(0) << "================================";
break;
}
lk.unlock();
real_microbatch_num += 1;
local_batch_id_ += 1;
}
int op_idx = 0; int op_idx = 0;
gettimeofday(&micro_start, NULL); gettimeofday(&micro_start, NULL);
for (auto& op : ops_) { for (auto& op : ops_) {
...@@ -616,7 +638,7 @@ void SectionWorker::TrainFilesWithProfiler() { ...@@ -616,7 +638,7 @@ void SectionWorker::TrainFilesWithProfiler() {
} }
dev_ctx_->Wait(); dev_ctx_->Wait();
// backward pass // backward pass
for (int i = 0; i < num_microbatches_; ++i) { for (int i = 0; i < real_microbatch_num; ++i) {
int op_idx = 0; int op_idx = 0;
gettimeofday(&micro_start, NULL); gettimeofday(&micro_start, NULL);
for (auto& op : ops_) { for (auto& op : ops_) {
...@@ -668,6 +690,9 @@ void SectionWorker::TrainFilesWithProfiler() { ...@@ -668,6 +690,9 @@ void SectionWorker::TrainFilesWithProfiler() {
} }
} }
dev_ctx_->Wait(); dev_ctx_->Wait();
if (real_microbatch_num == 0) {
return;
}
// update pass // update pass
int op_idx = 0; int op_idx = 0;
gettimeofday(&micro_start, NULL); gettimeofday(&micro_start, NULL);
......
...@@ -143,7 +143,6 @@ class PipelineTrainer : public TrainerBase { ...@@ -143,7 +143,6 @@ class PipelineTrainer : public TrainerBase {
int section_num_; int section_num_;
int num_microbatches_; int num_microbatches_;
int start_cpu_core_id_; int start_cpu_core_id_;
std::vector<std::string> feed_var_names_;
std::vector<platform::Place> places_; std::vector<platform::Place> places_;
std::vector<std::vector<std::string>> skip_vars_; std::vector<std::vector<std::string>> skip_vars_;
TrainerDesc trainer_desc_; TrainerDesc trainer_desc_;
......
...@@ -3676,15 +3676,9 @@ class PipelineOptimizer(object): ...@@ -3676,15 +3676,9 @@ class PipelineOptimizer(object):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
batch_size = 1 batch_size = 1
filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
dataset.set_use_var([x,y])
dataset.set_batch_size(batch_size)
dataset.set_filelist(filelist)
data_loader.start() data_loader.start()
exe.train_from_dataset( exe.train_from_dataset(
fluid.default_main_program(), fluid.default_main_program())
dataset)
data_loader.reset() data_loader.reset()
""" """
...@@ -3701,7 +3695,7 @@ class PipelineOptimizer(object): ...@@ -3701,7 +3695,7 @@ class PipelineOptimizer(object):
"num_microbatches must be a positive value.") "num_microbatches must be a positive value.")
self._num_microbatches = num_microbatches self._num_microbatches = num_microbatches
assert start_cpu_core_id >= 0, ( assert start_cpu_core_id >= 0, (
"start_cpu_core_id must be greater than or equal to 0.") "start_cpu_core_id must be a non negative integer.")
self._start_cpu_core_id = start_cpu_core_id self._start_cpu_core_id = start_cpu_core_id
self._place_list = None self._place_list = None
op_maker = core.op_proto_and_checker_maker op_maker = core.op_proto_and_checker_maker
...@@ -3800,8 +3794,6 @@ class PipelineOptimizer(object): ...@@ -3800,8 +3794,6 @@ class PipelineOptimizer(object):
if in_var_name == var_name: if in_var_name == var_name:
post_op.append(op) post_op.append(op)
if post_op: if post_op:
if not len(post_op) == 1:
raise ValueError("Each op can only have one post op.")
return post_op[0] return post_op[0]
return None return None
...@@ -3856,60 +3848,26 @@ class PipelineOptimizer(object): ...@@ -3856,60 +3848,26 @@ class PipelineOptimizer(object):
def _get_data_var_info(self, block): def _get_data_var_info(self, block):
""" """
Get all vars whose is_data attribute are true and then rename them. Get all vars whose is_data attribute are true and then rename them.
For PipelineTrainer, all data vars are binded to
minibatch scope, so we have to feed them to the microbatch
to avoid conflicts. The vars feeded to microbatch have to
be renamed.
""" """
# A map from var name to the renamed name. # map of data vars to devices that that data on
raw_name_new_name_map = dict()
# Because we will create vars in block, it is more safe
# to get all var_names before iteration.
var_names = list(block.vars.keys())
for var_name in var_names:
var = block.var(var_name)
if not var.is_data:
continue
assert var_name not in raw_name_new_name_map, (
"{} has already been processed.".format(var_name))
new_name = unique_name.generate(var_name)
raw_name_new_name_map[var_name] = new_name
new_var = self._create_var(block, var, new_name)
new_var.is_data = False
# map of data to devices that that data on
data_devices_map = dict() data_devices_map = dict()
for op in block.ops: for op in block.ops:
dev_spec = op.attr(self._op_device_key) dev_spec = op.attr(self._op_device_key)
for var_name in op.input_arg_names: for var_name in op.input_arg_names:
if var_name not in raw_name_new_name_map: if "blocking_queue" in var_name: continue
var = block.var(var_name)
if not var.is_data:
continue continue
if not var_name in data_devices_map: if not var_name in data_devices_map:
data_devices_map[var_name] = [] data_devices_map[var_name] = []
if not dev_spec in data_devices_map[var_name]: if not dev_spec in data_devices_map[var_name]:
data_devices_map[var_name].append(dev_spec) data_devices_map[var_name].append(dev_spec)
new_name = raw_name_new_name_map[var_name] return data_devices_map
#self._rename_arg(op, var_name, new_name)
return data_devices_map, raw_name_new_name_map
def _rename_var_in_block(self, block, raw_name_new_name_map):
"""
Rename vars whose names in raw_name_new_name_map to the corresponding
new names.
"""
for op in block.ops:
if op.type == "enqueue" or op.type == "dequeue":
continue
for var_name in op.input_arg_names:
if var_name in raw_name_new_name_map:
new_name = raw_name_new_name_map[var_name]
self._rename_arg(op, var_name, new_name)
def _insert_enq_deq_for_data_var(self, main_block, programs, startup, def _insert_enq_deq_for_data_var(self, main_block, programs, startup,
devices): devices):
""" """
Insert enqueue and dequeue ops for data var Insert enqueue and dequeue ops for data var that on other devices.
Args: Args:
main_block (Block): Global block for main program main_block (Block): Global block for main program
...@@ -3918,22 +3876,19 @@ class PipelineOptimizer(object): ...@@ -3918,22 +3876,19 @@ class PipelineOptimizer(object):
devices (list): List of devices in the format (dev:dev_index) devices (list): List of devices in the format (dev:dev_index)
""" """
main_program = main_block.program main_program = main_block.program
data_devices_map, raw_name_new_name_map = self._get_data_var_info( data_devices_map = self._get_data_var_info(main_block)
main_block)
first_prog = programs[0]['program'] first_prog = programs[0]['program']
first_block = first_prog.block(0) first_block = first_prog.block(0)
enqueue_index = 0 enqueue_index = 0
if first_block.ops[0].type == "create_py_reader" or ( for op in first_block.ops:
first_block.ops[1].type == "create_py_reader"): enqueue_index += 1
for op in first_block.ops: if op.type == "read":
if op.type == "read": break
enqueue_index += 1
break
enqueue_index += 1
first_dev_spec = devices[0] first_dev_spec = devices[0]
for var_name in data_devices_map.keys(): for var_name in data_devices_map.keys():
for device in data_devices_map[var_name]: for device in data_devices_map[var_name]:
if device == first_dev_spec: continue
# step1: generate queue for each pair of data var and device # step1: generate queue for each pair of data var and device
# that that data on # that that data on
queue_name = var_name + "_blocking_queue" queue_name = var_name + "_blocking_queue"
...@@ -3967,13 +3922,10 @@ class PipelineOptimizer(object): ...@@ -3967,13 +3922,10 @@ class PipelineOptimizer(object):
prog = programs[prog_index]['program'] prog = programs[prog_index]['program']
block = prog.block(0) block = prog.block(0)
index = 0 index = 0
if device == first_dev_spec:
index = enqueue_index + 1
new_name = raw_name_new_name_map[var_name]
source_var = main_program.block(0).var(var_name) source_var = main_program.block(0).var(var_name)
new_var = self._create_var(block, source_var, new_name) new_var = self._create_var(block, source_var, var_name)
block._insert_op( block._insert_op(
index=index, index=0,
type='dequeue', type='dequeue',
outputs={'Out': [new_var]}, outputs={'Out': [new_var]},
attrs={ attrs={
...@@ -3981,7 +3933,6 @@ class PipelineOptimizer(object): ...@@ -3981,7 +3933,6 @@ class PipelineOptimizer(object):
self._op_role_key: self._op_role.Forward, self._op_role_key: self._op_role.Forward,
'queue_name': queue_name, 'queue_name': queue_name,
}) })
self._rename_var_in_block(block, raw_name_new_name_map)
def _strip_grad_suffix(self, name): def _strip_grad_suffix(self, name):
""" """
...@@ -4162,82 +4113,57 @@ class PipelineOptimizer(object): ...@@ -4162,82 +4113,57 @@ class PipelineOptimizer(object):
}) })
extra_index += 1 extra_index += 1
def _add_dequeue_ops_for_optimize(self, block, startup_program): def _initialize_gradients(self, startup_block, main_block):
startup_block = startup_program.global_block() """
grad_queue_map = dict() Initialize gradients before run.
grad_device_map = dict() """
optimize_index = None for param_name in self._param_device_map:
grad_names_to_dequeue = [] grad_name = self._append_grad_suffix(param_name)
param_var = startup_block.vars[param_name]
grad_var = self._create_var(startup_block, param_var, grad_name)
main_grad_var = self._create_var(main_block, param_var, grad_name)
grad_var.persistable = True
main_grad_var.persistable = True
startup_block.append_op(
type='fill_constant',
inputs={},
outputs={'Out':[grad_var]},
attrs={
'shape': grad_var.shape,
'dtype': grad_var.dtype,
'value': float(0)
})
def _clear_gradients(self, block):
"""
Clear gradients after update.
"""
for index, op in reversed(list(enumerate(block.ops))): for index, op in reversed(list(enumerate(block.ops))):
device = op.attr(self._op_device_key) device = op.attr(self._op_device_key)
# Optimizer pass
if not self._is_optimize_op(op):
optimize_index = index + 1
break
if not self._is_update_op(op): continue if not self._is_update_op(op): continue
assert self._op_role_var_key in op.attr_names assert self._op_role_var_key in op.attr_names
op_role_var = op.all_attrs()[self._op_role_var_key] op_role_var = op.all_attrs()[self._op_role_var_key]
assert len(op_role_var) == 2 assert len(op_role_var) == 2
grad_name = op_role_var[1] grad_name = op_role_var[1]
assert grad_name not in grad_device_map grad_var = block.var(grad_name)
assert grad_name not in grad_names_to_dequeue
grad_device_map[grad_name] = device block.append_op(
grad_names_to_dequeue.append(grad_name) type='fill_constant',
inputs={},
for grad_name in grad_names_to_dequeue: outputs={'Out': [grad_var]},
device = grad_device_map[grad_name]
grad_names = []
grads = []
queue_name = grad_name + "_blocking_queue"
queue_name = unique_name.generate(queue_name)
grad_queue_map[grad_name] = queue_name
ref_var = block.vars[grad_name]
queue_var = startup_block.create_var(
name=queue_name,
persistable=True,
type=core.VarDesc.VarType.RAW)
startup_block.append_op(
type='queue_generator',
attrs={
'names': [queue_name],
'capacity': self._num_microbatches
})
orig_var_name = self._strip_grad_suffix(grad_name)
for _ in range(self._num_microbatches):
u_name = unique_name.generate(orig_var_name)
u_grad_name = self._append_grad_suffix(u_name)
grad_var = self._create_var(block, ref_var, u_grad_name)
grad_names.append(u_grad_name)
grads.append(grad_var)
block._insert_op(
index=optimize_index,
type='dequeue',
outputs={'Out': grads},
attrs={
self._op_device_key: device,
'queue_name': queue_name,
self._op_role_key: self._op_role.Optimize
})
block._insert_op(
index=optimize_index + 1,
type='sum',
inputs={'X': grad_names},
outputs={'Out': ref_var},
attrs={ attrs={
'shape': grad_var.shape,
'dtype': grad_var.dtype,
'value': float(0),
'force_cpu': False,
self._op_device_key: device, self._op_device_key: device,
self._op_role_key: self._op_role.Optimize self._op_role_key: self._op_role.Optimize
}) })
return grad_queue_map
def _insert_enq_deq_ops_for_update(self, block, startup_program): def _accumulate_gradients(self, block):
""" """
Insert enqueue and dequeue ops for gradients of parameters. Accumulate the graident generated in microbatch to the one in mini-batch.
""" """
startup_block = startup_program.global_block()
grad_queue_map = self._add_dequeue_ops_for_optimize(block,
startup_program)
for index, op in reversed(list(enumerate(block.ops))): for index, op in reversed(list(enumerate(block.ops))):
offset = index offset = index
device = op.attr(self._op_device_key) device = op.attr(self._op_device_key)
...@@ -4264,19 +4190,25 @@ class PipelineOptimizer(object): ...@@ -4264,19 +4190,25 @@ class PipelineOptimizer(object):
if len(op_role_var) == 0: if len(op_role_var) == 0:
continue continue
assert len(op_role_var) % 2 == 0 assert len(op_role_var) % 2 == 0
offset = index
for i in range(0, len(op_role_var), 2): for i in range(0, len(op_role_var), 2):
grad_name = op_role_var[i + 1] grad_name = op_role_var[i + 1]
grad_var = block.vars[grad_name] grad_var = block.vars[grad_name]
assert grad_name in grad_queue_map param_name = op_role_var[i]
queue_name = grad_queue_map[grad_name] param_var = block.vars[param_name]
new_var_name = unique_name.generate(param_name)
new_var_name = self._append_grad_suffix(new_var_name)
new_var = self._create_var(block, grad_var, new_var_name)
self._rename_arg(op, grad_name, new_var_name)
block._insert_op( block._insert_op(
index=offset + 1, index=offset + 1,
type='enqueue', type='sum',
inputs={'X': block.vars[grad_name]}, inputs={'X': [grad_var, new_var]},
outputs={'Out': grad_var},
attrs={ attrs={
'queue_name': queue_name,
self._op_device_key: device, self._op_device_key: device,
self._op_role_key: self._op_role.Backward self._op_role_key: self._op_role.Backward,
self._op_role_var_key: op_role_var
}) })
offset += 1 offset += 1
...@@ -4299,6 +4231,7 @@ class PipelineOptimizer(object): ...@@ -4299,6 +4231,7 @@ class PipelineOptimizer(object):
def _get_device_info(self, block): def _get_device_info(self, block):
for op in block.ops: for op in block.ops:
if not op._has_kernel(op.type): continue if not op._has_kernel(op.type): continue
op_device = op.attr(self._op_device_key) op_device = op.attr(self._op_device_key)
return op_device return op_device
...@@ -4420,8 +4353,11 @@ class PipelineOptimizer(object): ...@@ -4420,8 +4353,11 @@ class PipelineOptimizer(object):
self._insert_enq_deq_ops_for_boundaries(main_block, origin_main_block, self._insert_enq_deq_ops_for_boundaries(main_block, origin_main_block,
startup_program) startup_program)
# Step4: add a pair of enqueue and dequeueN for parameter gradients # Step4: accumulate gradients during backward
self._insert_enq_deq_ops_for_update(main_block, startup_program) # and clear them after update
self._initialize_gradients(startup_program.global_block(), main_block)
self._accumulate_gradients(main_block)
self._clear_gradients(main_block)
main_program = main_block.program main_program = main_block.program
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册