未验证 提交 11b6473c 编写于 作者: D daminglu 提交者: GitHub

Image classification & word2vec (#10738)

上级 40a2ee9a
...@@ -8,3 +8,4 @@ endforeach() ...@@ -8,3 +8,4 @@ endforeach()
add_subdirectory(fit_a_line) add_subdirectory(fit_a_line)
add_subdirectory(recognize_digits) add_subdirectory(recognize_digits)
add_subdirectory(image_classification)
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
# default test
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
CIFAR dataset.
This module will download dataset from
https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into
paddle reader creators.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test
images.
The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing
images per class.
"""
import cPickle
import itertools
import numpy
import paddle.v2.dataset.common
import tarfile
__all__ = ['train10']
URL_PREFIX = 'https://www.cs.toronto.edu/~kriz/'
CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz'
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
def reader_creator(filename, sub_name, batch_size=None):
def read_batch(batch):
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
for sample, label in itertools.izip(data, labels):
yield (sample / 255.0).astype(numpy.float32), int(label)
def reader():
with tarfile.open(filename, mode='r') as f:
names = (each_item.name for each_item in f
if sub_name in each_item.name)
batch_count = 0
for name in names:
batch = cPickle.load(f.extractfile(name))
for item in read_batch(batch):
if isinstance(batch_size, int) and batch_count > batch_size:
break
batch_count += 1
yield item
return reader
def train10(batch_size=None):
"""
CIFAR-10 training set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Training reader creator
:rtype: callable
"""
return reader_creator(
paddle.v2.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
'data_batch',
batch_size=batch_size)
...@@ -17,6 +17,7 @@ from __future__ import print_function ...@@ -17,6 +17,7 @@ from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy import numpy
import cifar10_small_test_set
def resnet_cifar10(input, depth=32): def resnet_cifar10(input, depth=32):
...@@ -81,46 +82,50 @@ def train_network(): ...@@ -81,46 +82,50 @@ def train_network():
cost = fluid.layers.cross_entropy(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
accuracy = fluid.layers.accuracy(input=predict, label=label) accuracy = fluid.layers.accuracy(input=predict, label=label)
return avg_cost, accuracy return [avg_cost, accuracy]
def train(use_cuda, save_path): def train(use_cuda, train_program, save_dirname):
BATCH_SIZE = 128 BATCH_SIZE = 128
EPOCH_NUM = 1 EPOCH_NUM = 1
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=128 * 10), cifar10_small_test_set.train10(batch_size=10), buf_size=128 * 10),
batch_size=BATCH_SIZE) batch_size=BATCH_SIZE)
test_reader = paddle.batch( test_reader = paddle.batch(
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE) paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
def event_handler(event): def event_handler(event):
if isinstance(event, fluid.EndIteration): if isinstance(event, fluid.EndStepEvent):
if (event.batch_id % 10) == 0: avg_cost, accuracy = trainer.test(
avg_cost, accuracy = trainer.test(reader=test_reader) reader=test_reader, feed_order=['pixel', 'label'])
print('BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'.format( print('Loss {0:2.2}, Acc {1:2.2}'.format(avg_cost, accuracy))
event.batch_id + 1, avg_cost, accuracy))
if accuracy > 0.01: # Low threshold for speeding up CI if accuracy > 0.01: # Low threshold for speeding up CI
trainer.params.save(save_path) if save_dirname is not None:
return trainer.save_params(save_dirname)
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer = fluid.Trainer( trainer = fluid.Trainer(
train_network, train_func=train_program,
optimizer=fluid.optimizer.Adam(learning_rate=0.001), optimizer=fluid.optimizer.Adam(learning_rate=0.001),
place=place, place=place)
event_handler=event_handler)
trainer.train(train_reader, EPOCH_NUM, event_handler=event_handler)
trainer.train(
reader=train_reader,
num_epochs=EPOCH_NUM,
event_handler=event_handler,
feed_order=['pixel', 'label'])
def infer(use_cuda, save_path):
params = fluid.Params(save_path) def infer(use_cuda, inference_program, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(inference_network, params, place=place) inferencer = fluid.Inferencer(
infer_func=inference_program, param_path=save_dirname, place=place)
# The input's dimension of conv should be 4-D or 5-D. # The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range # Use normilized image pixels as input data, which should be in the range
...@@ -135,8 +140,14 @@ def main(use_cuda): ...@@ -135,8 +140,14 @@ def main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda(): if use_cuda and not fluid.core.is_compiled_with_cuda():
return return
save_path = "image_classification_resnet.inference.model" save_path = "image_classification_resnet.inference.model"
train(use_cuda, save_path)
infer(use_cuda, save_path) train(
use_cuda=use_cuda, train_program=train_network, save_dirname=save_path)
infer(
use_cuda=use_cuda,
inference_program=inference_network,
save_dirname=save_path)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -17,6 +17,7 @@ from __future__ import print_function ...@@ -17,6 +17,7 @@ from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy import numpy
import cifar10_small_test_set
def vgg16_bn_drop(input): def vgg16_bn_drop(input):
...@@ -60,46 +61,48 @@ def train_network(): ...@@ -60,46 +61,48 @@ def train_network():
cost = fluid.layers.cross_entropy(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
accuracy = fluid.layers.accuracy(input=predict, label=label) accuracy = fluid.layers.accuracy(input=predict, label=label)
return avg_cost, accuracy return [avg_cost, accuracy]
def train(use_cuda, save_path): def train(use_cuda, train_program, save_dirname):
BATCH_SIZE = 128 BATCH_SIZE = 128
EPOCH_NUM = 1
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=128 * 10), cifar10_small_test_set.train10(batch_size=10), buf_size=128 * 10),
batch_size=BATCH_SIZE) batch_size=BATCH_SIZE)
test_reader = paddle.batch( test_reader = paddle.batch(
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE) paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
def event_handler(event): def event_handler(event):
if isinstance(event, fluid.EndIteration): if isinstance(event, fluid.EndStepEvent):
if (event.batch_id % 10) == 0: avg_cost, accuracy = trainer.test(
avg_cost, accuracy = trainer.test(reader=test_reader) reader=test_reader, feed_order=['pixel', 'label'])
print('BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'.format( print('Loss {0:2.2}, Acc {1:2.2}'.format(avg_cost, accuracy))
event.batch_id + 1, avg_cost, accuracy))
if accuracy > 0.01: # Low threshold for speeding up CI if accuracy > 0.01: # Low threshold for speeding up CI
trainer.params.save(save_path) if save_dirname is not None:
return trainer.save_params(save_dirname)
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer = fluid.Trainer( trainer = fluid.Trainer(
train_network, train_func=train_program,
optimizer=fluid.optimizer.Adam(learning_rate=0.001),
place=place, place=place,
event_handler=event_handler) optimizer=fluid.optimizer.Adam(learning_rate=0.001))
trainer.train(train_reader, EPOCH_NUM, event_handler=event_handler)
trainer.train(
reader=train_reader,
num_epochs=1,
event_handler=event_handler,
feed_order=['pixel', 'label'])
def infer(use_cuda, save_path): def infer(use_cuda, inference_program, save_dirname=None):
params = fluid.Params(save_path)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(inference_network, params, place=place) inferencer = fluid.Inferencer(
infer_func=inference_program, param_path=save_dirname, place=place)
# The input's dimension of conv should be 4-D or 5-D. # The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range # Use normilized image pixels as input data, which should be in the range
...@@ -114,8 +117,14 @@ def main(use_cuda): ...@@ -114,8 +117,14 @@ def main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda(): if use_cuda and not fluid.core.is_compiled_with_cuda():
return return
save_path = "image_classification_vgg.inference.model" save_path = "image_classification_vgg.inference.model"
train(use_cuda, save_path)
infer(use_cuda, save_path) train(
use_cuda=use_cuda, train_program=train_network, save_dirname=save_path)
infer(
use_cuda=use_cuda,
inference_program=inference_network,
save_dirname=save_path)
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册