提交 0e358ccc 编写于 作者: D dangqingqing

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into image_v2

......@@ -48,7 +48,7 @@ before_install:
- if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker
- pip install numpy wheel 'protobuf==3.1' sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker
- |
function timeout() { perl -e 'alarm shift; exec @ARGV' "$@"; }
script:
......
......@@ -92,6 +92,7 @@ include(external/swig) # download, build, install swig
include(external/warpctc) # download, build, install warpctc
include(external/any) # download libn::any
include(generic) # simplify cmake module
include(package) # set paddle packages
include(cpplint) # set paddle c++ style
include(ccache) # set ccache for compilation
......
文件模式从 100755 更改为 100644
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# To simplify the build process of PaddlePaddle, we defined couple of
# fundamental abstractions, e.g., how to build library, binary and
# test in C++, CUDA and Go.
#
# -------------------------------------------
# C++ CUDA C++ Go
# -------------------------------------------
# cc_library nv_library go_library
# cc_binary nv_binary go_binary
# cc_test nv_test go_test
# -------------------------------------------
#
# cmake_parse_arguments can help us to achieve this goal.
# https://cmake.org/cmake/help/v3.0/module/CMakeParseArguments.html
# cc_library parses tensor.cc and figures out that target also depend on tensor.h.
# cc_library(tensor
# SRCS
# tensor.cc
# DEPS
# variant)
function(cc_library TARGET_NAME)
set(options OPTIONAL)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(cc_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if (${cc_library_OPTIONAL} STREQUAL "SHARED")
add_library(${TARGET_NAME} SHARED ${cc_library_SRCS})
else()
add_library(${TARGET_NAME} STATIC ${cc_library_SRCS})
endif()
add_dependencies(${TARGET_NAME} ${cc_library_DEPS} ${external_project_dependencies})
endfunction(cc_library)
# cc_binary parses tensor.cc and figures out that target also depend on tensor.h.
# cc_binary(tensor
# SRCS
# tensor.cc)
function(cc_binary TARGET_NAME)
set(options OPTIONAL)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(cc_binary "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_executable(${TARGET_NAME} ${cc_binary_SRCS})
add_dependencies(${TARGET_NAME} ${cc_binary_DEPS} ${external_project_dependencies})
target_link_libraries(${TARGET_NAME} ${cc_binary_DEPS})
endfunction(cc_binary)
# The dependency to target tensor implies that if any of
# tensor{.h,.cc,_test.cc} is changed, tensor_test need to be re-built.
# cc_test(tensor_test
# SRCS
# tensor_test.cc
# DEPS
# tensor)
function(cc_test TARGET_NAME)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(cc_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_executable(${TARGET_NAME} ${cc_test_SRCS})
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} ${external_project_dependencies})
target_link_libraries(${TARGET_NAME} ${cc_test_DEPS} ${GTEST_MAIN_LIBRARIES} ${GTEST_LIBRARIES})
add_test(${TARGET_NAME} ${TARGET_NAME})
endfunction(cc_test)
# Suppose that ops.cu includes global functions that take Tensor as
# their parameters, so ops depend on tensor. This implies that if
# any of tensor.{h.cc}, ops.{h,cu} is changed, ops need to be re-built.
# nv_library(ops
# SRCS
# ops.cu
# DEPS
# tensor)
function(nv_library TARGET_NAME)
set(options OPTIONAL)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(nv_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if (${nv_library_OPTIONAL} STREQUAL "SHARED")
cuda_add_library(${TARGET_NAME} SHARED ${nv_library_SRCS})
else()
cuda_add_library(${TARGET_NAME} STATIC ${nv_library_SRCS})
endif()
add_dependencies(${TARGET_NAME} ${nv_library_DEPS} ${external_project_dependencies})
endfunction(nv_library)
function(nv_binary TARGET_NAME)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(nv_binary "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cuda_add_executable(${TARGET_NAME} ${nv_binary_SRCS})
add_dependencies(${TARGET_NAME} ${nv_binary_DEPS} ${external_project_dependencies})
target_link_libraries(${TARGET_NAME} ${nv_binary_DEPS})
endfunction(nv_binary)
# The dependency to target tensor implies that if any of
# ops{.h,.cu,_test.cu} is changed, ops_test need to be re-built.
# nv_test(ops_test
# SRCS
# ops_test.cu
# DEPS
# ops)
function(nv_test TARGET_NAME)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(nv_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cuda_add_executable(${TARGET_NAME} ${nv_test_SRCS})
add_dependencies(${TARGET_NAME} ${nv_test_DEPS} ${external_project_dependencies})
target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} ${GTEST_MAIN_LIBRARIES} ${GTEST_LIBRARIES})
add_test(${TARGET_NAME} ${TARGET_NAME})
endfunction(nv_test)
import sys
import math
import numpy as np
import paddle.v2 as paddle
import gzip
import logging
import paddle.v2.dataset.conll05 as conll05
import paddle.v2.evaluator as evaluator
import paddle.v2 as paddle
logger = logging.getLogger('paddle')
def db_lstm():
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
default_std = 1 / math.sqrt(hidden_dim) / 3.0
mix_hidden_lr = 1e-3
#8 features
def d_type(size):
return paddle.data_type.integer_value_sequence(size)
def d_type(size):
return paddle.data_type.integer_value_sequence(size)
def db_lstm():
#8 features
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))
......@@ -31,11 +38,7 @@ def db_lstm():
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
default_std = 1 / math.sqrt(hidden_dim) / 3.0
emb_para = paddle.attr.Param(name='emb', initial_std=0., learning_rate=0.)
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
std_0 = paddle.attr.Param(initial_std=0.)
std_default = paddle.attr.Param(initial_std=default_std)
......@@ -63,7 +66,6 @@ def db_lstm():
input=emb, param_attr=std_default) for emb in emb_layers
])
mix_hidden_lr = 1e-3
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
initial_std=default_std, learning_rate=mix_hidden_lr)
......@@ -111,6 +113,21 @@ def db_lstm():
input=input_tmp[1], param_attr=lstm_para_attr)
], )
return feature_out
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
def train():
paddle.init(use_gpu=False, trainer_count=1)
# define network topology
feature_out = db_lstm()
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
crf_cost = paddle.layer.crf(size=label_dict_len,
input=feature_out,
label=target,
......@@ -120,29 +137,15 @@ def db_lstm():
learning_rate=mix_hidden_lr))
crf_dec = paddle.layer.crf_decoding(
name='crf_dec_l',
size=label_dict_len,
input=feature_out,
label=target,
param_attr=paddle.attr.Param(name='crfw'))
return crf_cost, crf_dec
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
def main():
paddle.init(use_gpu=False, trainer_count=1)
# define network topology
crf_cost, crf_dec = db_lstm()
evaluator.sum(input=crf_dec)
# create parameters
parameters = paddle.parameters.create([crf_cost, crf_dec])
parameters = paddle.parameters.create(crf_cost)
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
# create optimizer
optimizer = paddle.optimizer.Momentum(
......@@ -152,18 +155,12 @@ def main():
model_average=paddle.optimizer.ModelAverage(
average_window=0.5, max_average_window=10000), )
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
trainer = paddle.trainer.SGD(cost=crf_cost,
parameters=parameters,
update_equation=optimizer)
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
update_equation=optimizer,
extra_layers=crf_dec)
trn_reader = paddle.batch(
reader = paddle.batch(
paddle.reader.shuffle(
conll05.test(), buf_size=8192), batch_size=10)
......@@ -179,12 +176,102 @@ def main():
'target': 8
}
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
logger.info("Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics))
if event.batch_id and event.batch_id % 1000 == 0:
result = trainer.test(reader=reader, feeding=feeding)
logger.info("\nTest with Pass %d, Batch %d, %s" %
(event.pass_id, event.batch_id, result.metrics))
if isinstance(event, paddle.event.EndPass):
# save parameters
with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
parameters.to_tar(f)
result = trainer.test(reader=reader, feeding=feeding)
logger.info("\nTest with Pass %d, %s" %
(event.pass_id, result.metrics))
trainer.train(
reader=trn_reader,
reader=reader,
event_handler=event_handler,
num_passes=10000,
num_passes=10,
feeding=feeding)
def infer_a_batch(inferer, test_data, word_dict, pred_dict, label_dict):
probs = inferer.infer(input=test_data, field='id')
assert len(probs) == sum(len(x[0]) for x in test_data)
for idx, test_sample in enumerate(test_data):
start_id = 0
pred_str = "%s\t" % (pred_dict[test_sample[6][0]])
for w, tag in zip(test_sample[0],
probs[start_id:start_id + len(test_sample[0])]):
pred_str += "%s[%s] " % (word_dict[w], label_dict[tag])
print(pred_str.strip())
start_id += len(test_sample[0])
def infer():
label_dict_reverse = dict((value, key)
for key, value in label_dict.iteritems())
word_dict_reverse = dict((value, key)
for key, value in word_dict.iteritems())
pred_dict_reverse = dict((value, key)
for key, value in verb_dict.iteritems())
test_creator = paddle.dataset.conll05.test()
paddle.init(use_gpu=False, trainer_count=1)
# define network topology
feature_out = db_lstm()
predict = paddle.layer.crf_decoding(
size=label_dict_len,
input=feature_out,
param_attr=paddle.attr.Param(name='crfw'))
test_pass = 0
with gzip.open('params_pass_%d.tar.gz' % (test_pass)) as f:
parameters = paddle.parameters.Parameters.from_tar(f)
inferer = paddle.inference.Inference(
output_layer=predict, parameters=parameters)
# prepare test data
test_data = []
test_batch_size = 50
for idx, item in enumerate(test_creator()):
test_data.append(item[0:8])
if idx and (not idx % test_batch_size):
infer_a_batch(
inferer,
test_data,
word_dict_reverse,
pred_dict_reverse,
label_dict_reverse, )
test_data = []
infer_a_batch(
inferer,
test_data,
word_dict_reverse,
pred_dict_reverse,
label_dict_reverse, )
test_data = []
def main(is_inferring=False):
if is_inferring:
infer()
else:
train()
if __name__ == '__main__':
main()
main(is_inferring=False)
# 构建Android平台上的PaddlePaddle库
用户可通过交叉编译的方式,在用户熟悉的开发平台(Linux,Mac OS X和Windows)上编译Android平台上适用的PaddlePaddle库。
本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。
## 准备交叉编译环境
从源码交叉编译PaddlePaddle,用户需要提前准备好交叉编译环境。Android平台上使用的C/C++交叉编译工具链为[Android NDK](https://developer.android.com/ndk/downloads/index.html?hl=zh-cn),用户可自行前往下载预编译好的版本,也可通过以下命令获取:
```bash
wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip
unzip -q android-ndk-r14b-linux-x86_64.zip
```
Android NDK中包含了所有Android API级别、所有架构(arm/arm64/x86/mips)需要用到的编译工具和系统库。用户可根据自己的编译目标架构、所需支持的最低Android API级别,构建[独立工具链](https://developer.android.google.cn/ndk/guides/standalone_toolchain.html?hl=zh-cn)
比如:
```bash
your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \
--arch=arm --platform=android-21 --install-dir=your/path/to/my_standalone_toolchain
```
此命令将在your/path/to/my_standalone_toolchain目录生成一套编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,使用的编译器为arm-linux-androideabi-gcc (GCC) 4.9。
注意:**PaddlePaddle要求使用的编译工具链所支持的Andoid API级别不小于21**
## 配置交叉编译参数
CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/android.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake),以提供一些默认的编译器和编译参数相关配置。注意,从CMake 3.7版本开始,CMake官方对Android平台的交叉编译提供了通用的支持。PaddlePaddle若检测到用户使用的CMake版本不低于3.7时,将会将用户传进来的配置参数传递CMake系统,交由CMake系统本身来处理。有关参数配置的详细说明见[cmake-toolchains](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling)
交叉编译Android版本的PaddlePaddle库时,有一些必须配置的参数:
- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译宿主机版protoc可执行文件、目标机版protobuf库、以及Android所需`arm_soft_fp_abi`分支的目标机版OpenBLAS库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF``WITH_AVX=OFF``WITH_PYTHON=OFF``WITH_RDMA=OFF`)。
- `WITH_C_API`,必须设置为`ON`。在Android平台上只支持使用C-API来预测。
- `WITH_SWIG_PY`,必须设置为`OFF`。在Android平台上不支持通过swig调用来训练或者预测。
Android平台可选配置参数:
- `ANDROID_STANDALONE_TOOLCHAIN`,独立工具链所在的绝对路径,或者相对于构建目录的相对路径。PaddlePaddle的CMake系统将根据该值自动推导和设置需要使用的交叉编译器、sysroot、以及Android API级别;否则,用户需要在cmake时手动设置这些值。无默认值。
- `ANDROID_ABI`,目标架构ABI。目前只支持`armeabi-v7a`,默认值为`armeabi-v7a`
- `ANDROID_NATIVE_API_LEVEL`,工具链的Android API级别。若没有显式设置,PaddlePaddle将根据`ANDROID_STANDALONE_TOOLCHAIN`的值自动推导得到。
- `ANROID_ARM_MODE`,是否使用ARM模式。可设置`ON/OFF`,默认值为`ON`
- `ANDROID_ARM_NEON`,是否使用NEON指令。目前必须设置成`ON`,默认值为`ON`
其他配置参数:
- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。
一种常用的cmake配置如下:
```bash
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=your/path/to/my_standalone_toolchain \
-DANDROID_ABI=armeabi-v7a \
-DANDROID_ARM_NEON=ON \
-DANDROID_ARM_MODE=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
..
```
用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE``MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE``Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。
## 编译和安装
CMake配置完成后,执行以下命令,PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle预测库。
```bash
make
make install
```
注意:如果你曾经在源码目录下编译过其他平台的PaddlePaddle库,请先使用`rm -rf`命令删除`third_party`目录和`build`目录,以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。
执行完安装命令后,`your/path/to/install`目录中会包含`include``lib`目录,其中`include`中包含C-API的头文件,`lib`中包含一个Android版本的库。自此,PaddlePaddle的已经安装完成,用户可将`your/path/to/install`目录下的生成文件用于深度学习相关Android App中,调用方法见C-API文档。
# 构建Raspberry Pi平台上的PaddlePaddle库
对于Rasspberry Pi系统,用户可通过ssh等方式登录到Raspberry Pi系统上,按照[源码编译PaddlePaddle](http://www.paddlepaddle.org/doc_cn/getstarted/build_and_install/cmake/build_from_source_cn.html)相关文档所述,直接编译Raspberry Pi平台上适用的PaddlePaddle库。
用户也可以在自己熟悉的开发平台上,通过交叉编译的方式来编译。这篇文档将以Linux x86-64平台为例,介绍交叉编译Raspberry Pi平台上适用的PaddlePaddle的方法和步骤。
## 准备交叉编译环境
从源码交叉编译PaddlePaddle,用户需要提前准备好交叉编译环境。用户可自行前往[github](https://github.com/raspberrypi/tools)下载Raspberry Pi平台使用的C/C++交叉编译工具链,也可通过以下命令获取:
```bash
git clone https://github.com/raspberrypi/tools.git
```
该github仓库中包含若干个预编译好的、针对不同平台的编译工具。宿主机是Linux x86-64环境,则需选用`arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64`下的作为编译工具,所使用的编译器为arm-linux-gnueabihf-gcc 4.8.3。
注意,该编译工具链需要系统glibc支持2.14以上。
## 配置交叉编译参数
CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/raspberry_pi.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/raspberry_pi.cmake),以提供一些默认的编译器和编译参数相关配置。
交叉编译Raspberry Pi版本PaddlePaddle库时,有一些必须配置的参数:
- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须配置为`RPi`。在设置`CMAKE_SYSTEM_NAME=RPi`后,PaddlePaddle的CMake系统才认为在是在交叉编译Raspberry Pi系统的版本,并自动编译宿主机版protoc可执行文件、目标机版protobuf库、以及目标机版OpenBLAS库。
Raspberry Pi平台可选配置参数:
- `RPI_TOOLCHAIN`,编译工具链所在的绝对路径,或者相对于构建目录的相对路径。PaddlePaddle的CMake系统将根据该值自动设置需要使用的交叉编译器;否则,用户需要在cmake时手动设置这些值。无默认值。
- `RPI_ARM_NEON`,是否使用NEON指令。目前必须设置成`ON`,默认值为`ON`
其他配置参数:
- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。
cmake参数如下;
```
cmake -DCMAKE_SYSTEM_NAME=RPi \
-DRPI_TOOLCHAIN=your/path/to/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64 \
-DRPI_ARM_NEON=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_GPU=OFF \
-DWITH_C_API=ON \
-DWITH_PYTHON=OFF \
-DWITH_SWIG_PY=OFF \
..
```
用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE``MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE``Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。
## 编译和安装
CMake配置完成后,执行以下命令,PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle。
```bash
make
make install
```
注意:如果你曾经在源码目录下编译过其他平台的PaddlePaddle库,请先使用`rm -rf`命令删除`third_party`目录和`build`目录,以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。
执行完安装命令后,由于上一步cmake配置中`WITH_C_API`设置为`ON``your/path/to/install`目录中会包含`include``lib`目录,其中`include`中包含C-API的头文件,`lib`中包含一个Raspberry Pi版本的库。
更多的编译配置见[源码编译PaddlePaddle](http://www.paddlepaddle.org/doc_cn/getstarted/build_and_install/cmake/build_from_source_cn.html)相关文档。
......@@ -26,7 +26,7 @@ FILE(GLOB PY_PADDLE_PYTHON_FILES ${PROJ_ROOT}/paddle/py_paddle/*.py)
SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON)
SET(CMAKE_SWIG_OUTDIR ${CMAKE_CURRENT_BINARY_DIR})
SET(CMAKE_CXX_FLAGS "-std=c++11 -fPIC -Wall")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -fPIC -Wall")
IF(WITH_COVERAGE)
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -O0 -fprofile-arcs -ftest-coverage")
ENDIF(WITH_COVERAGE)
......
cmake_minimum_required(VERSION 3.0)
if(${CMAKE_CURRENT_SOURCE_DIR} STREQUAL ${CMAKE_SOURCE_DIR})
# find #include <majel/xx.h>
get_filename_component(PARENT_DIR ${CMAKE_CURRENT_SOURCE_DIR} DIRECTORY)
include_directories(${PARENT_DIR})
# find cmake directory modules
get_filename_component(PARENT_DIR ${PARENT_DIR} DIRECTORY)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${PARENT_DIR}/cmake")
# enable c++11
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
# enable gtest
set(THIRD_PARTY_PATH ${CMAKE_CURRENT_SOURCE_DIR}/third_party)
set(WITH_TESTING ON)
include(external/gtest)
else()
message("-- Found gtest (include: ${GTEST_INCLUDE_DIR}, library: ${GTEST_LIBRARIES})")
endif()
########################### Build Majel #############################
set(MAJEL_CXX_FILES place.cc)
set(MAJEL_CUDA_FILES "")
if(CUDA_FOUND)
cuda_add_library(majel ${MAJEL_CUDA_FILES} ${MAJEL_CXX_FILES})
else()
add_library(majel ${MAJEL_CXX_FILES})
endif()
add_dependencies(majel ${external_project_dependencies})
#####################################################################
cc_library(majel SRCS place.cc)
if(WITH_TESTING)
add_subdirectory(test)
......
......@@ -93,6 +93,19 @@ typedef boost::variant<
Because `variant` may be thought of as "multi-type, single value", we can utilize it to implement unified interfaces for PaddlePaddle.
`DDim` plays two kinds of roles in Majel. First, it is used to indicate the size of a tensor. For example, we can construct a new `DArray` by following way:
```c++
DArray arr = make_darray(make_ddim({2,3}), 0.0f);
```
It means that `arr` will be a two-dimension tensor, or a matrix. The size of its first dimension is 2 and the second is 3. All the element value of `arr` will be initialized as 0.0 .
The second meaning of `DDim` is tensor index. For example, if we want to access the value in the 1st row and 2nd column of `arr` and set it to 1.0, we can do like this:
```c++
arr[make_ddim({0, 1})] = 1.0
```
## implement Tensor in Paddle
Before writing code, please make sure you already look through Majel Source Code and grabbed the design philosophy of `DArray` in Majel.
......@@ -113,7 +126,7 @@ To assign subtasks to our colleagues, we have to discuss how to divide it to ind
- [ ] 3. Re-implement `Dim`.
`Dim` is an excellent implementation in Majel.
`Dim` is an excellent implementation in Majel.
> ???
......
file(GLOB_RECURSE ALL_TEST_FILES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.cc")
cc_test(place_test
SRCS place_test.cc
DEPS majel)
add_executable(majel_tests ${ALL_TEST_FILES})
add_dependencies(majel_tests majel)
target_link_libraries(majel_tests
${Boost_LIBRARIES}
${GTEST_LIBRARIES}
${GTEST_MAIN_LIBRARIES}
majel
)
add_test(majel_tests majel_tests)
if(WITH_GPU)
nv_test(cuda_test SRCS cuda_test.cu)
endif()
#include <cuda_runtime.h>
#include <stdio.h>
#include "gtest/gtest.h"
#define CHECK_ERR(x) \
if (x != cudaSuccess) { \
fprintf(stderr, \
"%s in %s at line %d\n", \
cudaGetErrorString(err), \
__FILE__, \
__LINE__); \
exit(-1); \
}
__global__ void vecAdd(float *d_A, float *d_B, float *d_C, int n) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < n) {
d_C[i] = d_A[i] + d_B[i];
}
}
TEST(Cuda, Equality) {
int n = 10;
// Memory allocation for h_A, h_B and h_C (in the host)
float h_A[10] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 0.0};
float h_B[10] = {0.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0};
float h_C[10];
float *d_A, *d_B, *d_C;
cudaError_t err;
// Memory allocation for d_A, d_B and d_C (in the device)
err = cudaMalloc((void **)&d_A, sizeof(float) * n);
CHECK_ERR(err);
err = cudaMalloc((void **)&d_B, sizeof(float) * n);
CHECK_ERR(err);
err = cudaMalloc((void **)&d_C, sizeof(float) * n);
CHECK_ERR(err);
// Copying memory to device
err = cudaMemcpy(d_A, h_A, sizeof(float) * n, cudaMemcpyHostToDevice);
CHECK_ERR(err);
err = cudaMemcpy(d_B, h_B, sizeof(float) * n, cudaMemcpyHostToDevice);
CHECK_ERR(err);
// Calling the kernel
vecAdd<<<ceil(n / 256.0), 256>>>(d_A, d_B, d_C, n);
// Copying results back to host
err = cudaMemcpy(h_C, d_C, sizeof(float) * n, cudaMemcpyDeviceToHost);
CHECK_ERR(err);
EXPECT_EQ(h_C[0], 1.0);
for (int i = 1; i < n - 1; ++i) {
EXPECT_EQ(h_C[i], 11.0);
}
EXPECT_EQ(h_C[9], 1.0);
}
......@@ -60,7 +60,6 @@ function deploy_docs() {
deploy_docs "master" "."
deploy_docs "develop" "./develop/"
deploy_docs "release/0.10.0" "./release/0.10.0/"
# Check is there anything changed.
set +e
......
......@@ -19,19 +19,22 @@ limitations under the License. */
/// for MSVC
#define CPUID(info, x) __cpuidex(info, x, 0)
#elif !defined(__ANDROID__)
#else
#if !defined(__arm__)
#include <cpuid.h>
/// for GCC/Clang
#define CPUID(info, x) __cpuid_count(x, 0, info[0], info[1], info[2], info[3])
#endif
#endif
namespace paddle {
SIMDFlags::SIMDFlags() {
#if !defined(__ANDROID__)
#if defined(__arm__)
simd_flags_ = SIMD_NEON;
#else
unsigned int cpuInfo[4];
// CPUID: https://en.wikipedia.org/wiki/CPUID
// clang-format off
......@@ -52,8 +55,6 @@ SIMDFlags::SIMDFlags() {
CPUID(cpuInfo, 0x80000001);
simd_flags_ |= cpuInfo[2] & (1 << 16) ? SIMD_FMA4 : SIMD_NONE;
// clang-fotmat on
#else
simd_flags_ = SIMD_NEON;
#endif
}
......
......@@ -2320,6 +2320,9 @@ def Memory(name,
memory_name = name + "+delay1"
agent_name = memory_name
if is_sequence:
config_assert(
boot_layer is not None,
"there must be boot_layer in network when is_sequence = True")
agent_layer = SequenceAgentLayer(agent_name, size)
else:
agent_layer = AgentLayer(agent_name, size)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册