Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0e1e098c
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0e1e098c
编写于
9月 28, 2020
作者:
W
WangXi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add lams lamb, test=develop
上级
8dd3d4b6
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
157 addition
and
174 deletion
+157
-174
python/paddle/distributed/fleet/meta_optimizers/amp_optimizer.py
...paddle/distributed/fleet/meta_optimizers/amp_optimizer.py
+1
-1
python/paddle/distributed/fleet/meta_optimizers/lamb_optimizer.py
...addle/distributed/fleet/meta_optimizers/lamb_optimizer.py
+4
-0
python/paddle/distributed/fleet/meta_optimizers/lars_optimizer.py
...addle/distributed/fleet/meta_optimizers/lars_optimizer.py
+4
-0
python/paddle/fluid/tests/unittests/fleet_meta_optimizer_base.py
...paddle/fluid/tests/unittests/fleet_meta_optimizer_base.py
+43
-55
python/paddle/fluid/tests/unittests/test_dgc_optimizer.py
python/paddle/fluid/tests/unittests/test_dgc_optimizer.py
+13
-4
python/paddle/fluid/tests/unittests/test_fleet_amp_meta_optimizer.py
...le/fluid/tests/unittests/test_fleet_amp_meta_optimizer.py
+21
-32
python/paddle/fluid/tests/unittests/test_fleet_dgc_meta_optimizer.py
...le/fluid/tests/unittests/test_fleet_dgc_meta_optimizer.py
+27
-53
python/paddle/fluid/tests/unittests/test_fleet_recompute_meta_optimizer.py
...id/tests/unittests/test_fleet_recompute_meta_optimizer.py
+44
-29
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/amp_optimizer.py
浏览文件 @
0e1e098c
...
@@ -46,7 +46,7 @@ class AMPOptimizer(MetaOptimizerBase):
...
@@ -46,7 +46,7 @@ class AMPOptimizer(MetaOptimizerBase):
custom_white_list
=
set
(
config
[
'custom_white_list'
])
custom_white_list
=
set
(
config
[
'custom_white_list'
])
custom_black_list
=
set
(
config
[
'custom_black_list'
])
custom_black_list
=
set
(
config
[
'custom_black_list'
])
custom_black_varnames
=
set
(
config
[
'custom_black_varnames'
])
custom_black_varnames
=
set
(
config
[
'custom_black_varnames'
])
self
.
amp_lists
=
mixed_precision
.
AutoMixedPrecisionLists
(
amp_lists
=
mixed_precision
.
AutoMixedPrecisionLists
(
custom_white_list
,
custom_black_list
,
custom_black_varnames
)
custom_white_list
,
custom_black_list
,
custom_black_varnames
)
self
.
wrapped_opt
=
mixed_precision
.
decorate
(
self
.
wrapped_opt
=
mixed_precision
.
decorate
(
...
...
python/paddle/distributed/fleet/meta_optimizers/lamb_optimizer.py
浏览文件 @
0e1e098c
...
@@ -98,6 +98,10 @@ class LambOptimizer(MetaOptimizerBase):
...
@@ -98,6 +98,10 @@ class LambOptimizer(MetaOptimizerBase):
def
apply_gradients
(
self
,
params_grads
):
def
apply_gradients
(
self
,
params_grads
):
return
self
.
lamb_opt
.
apply_gradients
(
params_grads
=
params_grads
)
return
self
.
lamb_opt
.
apply_gradients
(
params_grads
=
params_grads
)
def
apply_optimize
(
self
,
loss
,
startup_program
,
params_grads
):
return
self
.
lamb_opt
.
apply_optimize
(
loss
,
startup_program
=
startup_program
,
params_grads
=
params_grads
)
def
minimize_impl
(
self
,
def
minimize_impl
(
self
,
loss
,
loss
,
startup_program
=
None
,
startup_program
=
None
,
...
...
python/paddle/distributed/fleet/meta_optimizers/lars_optimizer.py
浏览文件 @
0e1e098c
...
@@ -85,6 +85,10 @@ class LarsOptimizer(MetaOptimizerBase):
...
@@ -85,6 +85,10 @@ class LarsOptimizer(MetaOptimizerBase):
def
apply_gradients
(
self
,
params_grads
):
def
apply_gradients
(
self
,
params_grads
):
return
self
.
lars_opt
.
apply_gradients
(
params_grads
=
params_grads
)
return
self
.
lars_opt
.
apply_gradients
(
params_grads
=
params_grads
)
def
apply_optimize
(
self
,
loss
,
startup_program
,
params_grads
):
return
self
.
lars_opt
.
apply_optimize
(
loss
,
startup_program
=
startup_program
,
params_grads
=
params_grads
)
def
minimize_impl
(
self
,
def
minimize_impl
(
self
,
loss
,
loss
,
startup_program
=
None
,
startup_program
=
None
,
...
...
python/paddle/fluid/tests/unittests/
test_fleet_combine_meta_optimizer
.py
→
python/paddle/fluid/tests/unittests/
fleet_meta_optimizer_base
.py
浏览文件 @
0e1e098c
...
@@ -19,10 +19,8 @@ import os
...
@@ -19,10 +19,8 @@ import os
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
paddle.distributed.fleet.base.role_maker
as
role_maker
paddle
.
enable_static
()
class
TestFleetMetaOptimizer
(
unittest
.
TestCase
):
class
TestFleetCombineOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"1"
os
.
environ
[
os
.
environ
[
...
@@ -50,19 +48,21 @@ class TestFleetCombineOptimizer(unittest.TestCase):
...
@@ -50,19 +48,21 @@ class TestFleetCombineOptimizer(unittest.TestCase):
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
dgc
=
True
strategy
.
dgc_configs
=
{
"rampup_begin_step"
:
128
,
"rampup_step"
:
100
,
"sparsity"
:
[
0.996
,
0.999
]
}
return
avg_cost
,
strategy
return
avg_cost
,
strategy
def
optimizer
(
self
,
loss
,
strategy
,
train_prog
,
startup_prog
):
def
optimizer
(
self
,
loss
,
strategy
,
train_prog
,
startup_prog
,
name
=
'momentum'
):
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
unique_name
.
guard
():
optimizer
=
paddle
.
fluid
.
optimizer
.
Momentum
(
if
name
==
'momentum'
:
learning_rate
=
0.01
,
momentum
=
0.9
)
optimizer
=
paddle
.
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.01
,
momentum
=
0.9
)
elif
name
==
'adam'
:
optimizer
=
paddle
.
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
loss
)
optimizer
.
minimize
(
loss
)
...
@@ -70,53 +70,41 @@ class TestFleetCombineOptimizer(unittest.TestCase):
...
@@ -70,53 +70,41 @@ class TestFleetCombineOptimizer(unittest.TestCase):
def
set_strategy
(
self
,
strategy
,
name
):
def
set_strategy
(
self
,
strategy
,
name
):
if
name
==
'amp'
:
if
name
==
'amp'
:
strategy
.
amp
=
True
strategy
.
amp
=
True
strategy
.
amp_configs
=
{
"init_loss_scaling"
:
32768
,
"decr_every_n_nan_or_inf"
:
2
,
"incr_every_n_steps"
:
1000
,
"incr_ratio"
:
2.0
,
"use_dynamic_loss_scaling"
:
True
,
"decr_ratio"
:
0.5
,
"custom_white_list"
:
[
'softmax'
],
"custom_black_list"
:
[
'tanh'
],
}
elif
name
==
'dgc'
:
elif
name
==
'dgc'
:
strategy
.
dgc
=
True
strategy
.
dgc
=
True
strategy
.
dgc_configs
=
{
"rampup_begin_step"
:
128
,
"rampup_step"
:
100
,
"sparsity"
:
[
0.996
,
0.999
]
}
elif
name
==
'recompute'
:
elif
name
==
'recompute'
:
strategy
.
recompute
=
True
strategy
.
recompute
=
True
strategy
.
recompute_configs
=
{
strategy
.
recompute_configs
=
{
"checkpoints"
:
[
"fc_0.tmp_2"
,
"fc_1.tmp_2"
]
"checkpoints"
:
[
"fc_0.tmp_2"
,
"fc_1.tmp_2"
]
}
}
elif
name
==
'lars'
:
def
test_dgc_recompute_optimizer
(
self
):
strategy
.
lars
=
True
train_prog
=
fluid
.
Program
()
strategy
.
lars_configs
=
{
startup_prog
=
fluid
.
Program
()
"lars_coeff"
:
0.001
,
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
"lars_weight_decay"
:
0.0005
,
"epsilon"
:
0
,
self
.
set_strategy
(
strategy
,
'dgc'
)
"exclude_from_weight_decay"
:
[
"batch_norm"
,
".b"
],
self
.
set_strategy
(
strategy
,
'recompute'
)
}
elif
name
==
'lamb'
:
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
strategy
.
lamb
=
True
strategy
.
lamb_configs
=
{
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
'lamb_weight_decay'
:
0.01
,
outs
=
[
'exclude_from_weight_decay'
:
[],
op
.
output
(
'Out'
)[
0
]
for
op
in
avg_cost
.
block
.
ops
if
op
.
type
==
'mul'
}
]
else
:
self
.
assertIn
(
'dgc'
,
ops
)
raise
NotImplementedError
()
self
.
assertIn
(
'dgc_momentum'
,
ops
)
self
.
assertIn
(
'subprog'
,
''
.
join
(
outs
))
def
test_amp_recompute_optimizer
(
self
):
train_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
self
.
set_strategy
(
strategy
,
'amp'
)
self
.
set_strategy
(
strategy
,
'recompute'
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
outs
=
[
op
.
output
(
'Out'
)[
0
]
for
op
in
avg_cost
.
block
.
ops
if
op
.
type
==
'mul'
]
print
(
train_prog
)
self
.
assertIn
(
'cast'
,
ops
)
self
.
assertIn
(
'check_finite_and_unscale'
,
ops
)
self
.
assertIn
(
'subprog'
,
''
.
join
(
outs
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dgc_optimizer.py
浏览文件 @
0e1e098c
...
@@ -16,12 +16,14 @@ from __future__ import print_function
...
@@ -16,12 +16,14 @@ from __future__ import print_function
import
unittest
import
unittest
import
paddle
import
paddle.fluid.framework
as
framework
import
paddle.fluid.framework
as
framework
import
paddle.fluid.optimizer
as
optimizer
import
paddle.fluid.optimizer
as
optimizer
import
paddle.fluid.regularizer
as
regularizer
import
paddle.fluid.regularizer
as
regularizer
import
paddle.fluid.clip
as
clip
import
paddle.fluid.clip
as
clip
import
paddle.compat
as
cpt
import
paddle.compat
as
cpt
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.backward
import
append_backward
paddle
.
enable_static
()
class
TestDGCMomentumOptimizer
(
unittest
.
TestCase
):
class
TestDGCMomentumOptimizer
(
unittest
.
TestCase
):
...
@@ -86,13 +88,17 @@ class TestDGCMomentumOptimizer(unittest.TestCase):
...
@@ -86,13 +88,17 @@ class TestDGCMomentumOptimizer(unittest.TestCase):
block
.
append_op
(
block
.
append_op
(
type
=
"mean"
,
inputs
=
{
"X"
:
mul_out
},
outputs
=
{
"Out"
:
mean_out
})
type
=
"mean"
,
inputs
=
{
"X"
:
mul_out
},
outputs
=
{
"Out"
:
mean_out
})
# params_grads = append_backward(mean_out)
# params_grads = append_backward(mean_out)
params_grads
=
dgc_momentum_optimizer
.
backward
(
mean_out
)
params_grads
=
dgc_momentum_optimizer
.
backward
(
mean_out
,
startup_program
=
init_program
)
with
framework
.
program_guard
(
program
,
init_program
):
opts
=
dgc_momentum_optimizer
.
apply_gradients
(
params_grads
)
accumulator_count
=
1
if
name
==
"momentum"
else
2
accumulator_count
=
1
if
name
==
"momentum"
else
2
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
self
.
assertEqual
(
len
(
dgc_momentum_optimizer
.
get_accumulators
()),
accumulator_count
)
len
(
dgc_momentum_optimizer
.
get_accumulators
()),
accumulator_count
)
with
framework
.
program_guard
(
program
,
init_program
):
opts
=
dgc_momentum_optimizer
.
apply_gradients
(
params_grads
)
self
.
assertEqual
(
len
(
opts
),
2
)
self
.
assertEqual
(
len
(
opts
),
2
)
sgd_op
=
opts
[
-
1
]
sgd_op
=
opts
[
-
1
]
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
name
])
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
name
])
...
@@ -108,8 +114,11 @@ class TestDGCMomentumOptimizer(unittest.TestCase):
...
@@ -108,8 +114,11 @@ class TestDGCMomentumOptimizer(unittest.TestCase):
self
.
assertTrue
(
mul_x
.
name
in
velocity_acc
)
self
.
assertTrue
(
mul_x
.
name
in
velocity_acc
)
# Check init_program
# Check init_program
# dgc not apply include: lr, dgc(count, nranks, begin step), (u,)
# dgc apply include: lr, dgc(count, nranks, begin_step), (u,v,k,encode,gather)
init_ops_count
=
5
if
name
==
"momentum"
else
9
init_ops
=
init_program
.
global_block
().
ops
init_ops
=
init_program
.
global_block
().
ops
self
.
assertEqual
(
len
(
init_ops
),
1
)
self
.
assertEqual
(
len
(
init_ops
),
init_ops_count
)
self
.
assertEqual
(
init_ops
[
0
].
type
,
"fill_constant"
)
self
.
assertEqual
(
init_ops
[
0
].
type
,
"fill_constant"
)
self
.
assertAlmostEqual
(
init_ops
[
0
].
attr
(
'value'
),
learning_rate
)
self
.
assertAlmostEqual
(
init_ops
[
0
].
attr
(
'value'
),
learning_rate
)
...
...
python/paddle/fluid/tests/unittests/test_fleet_amp_meta_optimizer.py
浏览文件 @
0e1e098c
...
@@ -16,53 +16,42 @@ import paddle.distributed.fleet as fleet
...
@@ -16,53 +16,42 @@ import paddle.distributed.fleet as fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
unittest
import
unittest
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
os
import
os
from
fleet_meta_optimizer_base
import
TestFleetMetaOptimizer
paddle
.
enable_static
()
paddle
.
enable_static
()
class
TestFleetAMPOptimizer
(
unittest
.
TestCase
):
class
TestFleetAMPOptimizer
(
TestFleetMetaOptimizer
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
def
test_amp_optimizer
(
self
):
def
test_amp_optimizer
(
self
):
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
fleet
.
init
(
role
)
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
input_x
=
paddle
.
fluid
.
layers
.
data
(
self
.
set_strategy
(
strategy
,
'amp'
)
name
=
"x"
,
shape
=
[
32
],
dtype
=
'float32'
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
fc_2
=
paddle
.
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
64
,
act
=
'tanh'
)
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
2
,
act
=
'softmax'
)
cost
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
strategy
.
amp
=
True
self
.
assertIn
(
'cast'
,
ops
)
strategy
.
amp_configs
=
{
self
.
assertIn
(
'check_finite_and_unscale'
,
ops
)
"init_loss_scaling"
:
32768
,
"decr_every_n_nan_or_inf"
:
2
,
"incr_every_n_steps"
:
1000
,
"incr_ratio"
:
2.0
,
"use_dynamic_loss_scaling"
:
True
,
"decr_ratio"
:
0.5
,
"custom_white_list"
:
[
'softmax'
],
"custom_black_list"
:
[
'tanh'
],
}
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
def
test_amp_recompute_optimizer
(
self
):
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
optimizer
.
minimize
(
avg_cost
)
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
self
.
set_strategy
(
strategy
,
'amp'
)
self
.
set_strategy
(
strategy
,
'recompute'
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
strategy
=
fleet
.
_final_strategy
()
strategy
=
fleet
.
_final_strategy
()
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
outs
=
[
op
.
output
(
'Out'
)[
0
]
for
op
in
avg_cost
.
block
.
ops
if
op
.
type
==
'mul'
]
self
.
assertIn
(
'cast'
,
ops
)
self
.
assertIn
(
'cast'
,
ops
)
self
.
assertIn
(
'check_finite_and_unscale'
,
ops
)
self
.
assertIn
(
'check_finite_and_unscale'
,
ops
)
self
.
assertIn
(
'subprog'
,
''
.
join
(
outs
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_dgc_meta_optimizer.py
浏览文件 @
0e1e098c
...
@@ -18,66 +18,27 @@ from paddle import fluid
...
@@ -18,66 +18,27 @@ from paddle import fluid
import
os
import
os
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
paddle.distributed.fleet.base.role_maker
as
role_maker
from
fleet_meta_optimizer_base
import
TestFleetMetaOptimizer
paddle
.
enable_static
()
paddle
.
enable_static
()
class
TestFleetDGCOptimizer
(
unittest
.
TestCase
):
class
TestFleetDGCOptimizer
(
TestFleetMetaOptimizer
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001,127.0.0.1:36002"
def
net
(
self
,
main_prog
,
startup_prog
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
input_x
=
paddle
.
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
fc_2
=
paddle
.
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
256
,
act
=
'tanh'
)
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
2
,
act
=
'softmax'
)
cost
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
dgc
=
True
strategy
.
dgc_configs
=
{
"rampup_begin_step"
:
128
,
"rampup_step"
:
100
,
"sparsity"
:
[
0.996
,
0.999
]
}
return
avg_cost
,
strategy
def
test_dgc_optimizer
(
self
):
def
test_dgc_optimizer
(
self
):
startup_prog
=
fluid
.
Program
()
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
train_prog
=
fluid
.
Program
()
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
optimizer
=
paddle
.
fluid
.
optimizer
.
Momentum
(
self
.
set_strategy
(
strategy
,
'dgc'
)
learning_rate
=
0.01
,
momentum
=
0.9
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
self
.
assertIn
(
'dgc'
,
ops
)
self
.
assertIn
(
'dgc'
,
ops
)
self
.
assertIn
(
'dgc_momentum'
,
ops
)
self
.
assertIn
(
'dgc_momentum'
,
ops
)
def
test_dgc_not_apply_with_adam
(
self
):
def
test_dgc_not_apply_with_adam
(
self
):
startup_prog
=
fluid
.
Program
()
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
train_prog
=
fluid
.
Program
()
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
optimizer
=
paddle
.
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
self
.
set_strategy
(
strategy
,
'dgc'
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
,
'adam'
)
optimizer
.
minimize
(
avg_cost
)
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
self
.
assertNotIn
(
'dgc'
,
ops
)
self
.
assertNotIn
(
'dgc'
,
ops
)
...
@@ -87,18 +48,31 @@ class TestFleetDGCOptimizer(unittest.TestCase):
...
@@ -87,18 +48,31 @@ class TestFleetDGCOptimizer(unittest.TestCase):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
startup_prog
=
fluid
.
Program
()
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
train_prog
=
fluid
.
Program
()
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
optimizer
=
paddle
.
fluid
.
optimizer
.
Momentum
(
self
.
set_strategy
(
strategy
,
'dgc'
)
learning_rate
=
0.01
,
momentum
=
0.9
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
self
.
assertNotIn
(
'dgc'
,
ops
)
self
.
assertNotIn
(
'dgc'
,
ops
)
self
.
assertNotIn
(
'dgc_momentum'
,
ops
)
self
.
assertNotIn
(
'dgc_momentum'
,
ops
)
def
test_dgc_recompute_optimizer
(
self
):
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
self
.
set_strategy
(
strategy
,
'dgc'
)
self
.
set_strategy
(
strategy
,
'recompute'
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
outs
=
[
op
.
output
(
'Out'
)[
0
]
for
op
in
avg_cost
.
block
.
ops
if
op
.
type
==
'mul'
]
self
.
assertIn
(
'dgc'
,
ops
)
self
.
assertIn
(
'dgc_momentum'
,
ops
)
self
.
assertIn
(
'subprog'
,
''
.
join
(
outs
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_recompute_meta_optimizer.py
浏览文件 @
0e1e098c
...
@@ -14,40 +14,55 @@
...
@@ -14,40 +14,55 @@
import
unittest
import
unittest
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
os
import
os
from
fleet_meta_optimizer_base
import
TestFleetMetaOptimizer
paddle
.
enable_static
()
class
TestFleetRecomputeMetaOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"POD_IP"
]
=
"127.0.0.1"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"2"
os
.
environ
[
"PADDLE_PSERVERS_IP_PORT_LIST"
]
=
\
"127.0.0.1:36001,127.0.0.2:36001"
class
TestFleetRecomputeMetaOptimizer
(
TestFleetMetaOptimizer
):
def
test_recompute_optimizer
(
self
):
def
test_recompute_optimizer
(
self
):
import
paddle.distributed.fleet
as
fleet
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
import
paddle.distributed.fleet.base.role_maker
as
role_maker
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
self
.
set_strategy
(
strategy
,
'recompute'
)
fleet
.
init
(
role
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
input_x
=
paddle
.
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
32
],
dtype
=
'float32'
)
outs
=
[
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
op
.
output
(
'Out'
)[
0
]
for
op
in
avg_cost
.
block
.
ops
if
op
.
type
==
'mul'
]
fc_1
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
fc_2
=
paddle
.
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
64
,
act
=
'tanh'
)
self
.
assertIn
(
'subprog'
,
''
.
join
(
outs
))
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
2
,
act
=
'softmax'
)
cost
=
paddle
.
fluid
.
layers
.
cross_entropy
(
def
test_recompute_lars_optimizer
(
self
):
input
=
prediction
,
label
=
input_y
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
self
.
set_strategy
(
strategy
,
'recompute'
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
self
.
set_strategy
(
strategy
,
'lars'
)
strategy
.
recompute
=
True
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
strategy
.
recompute_configs
=
{
"checkpoints"
:
[
"fc_1.tmp_0"
]}
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
outs
=
[
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
op
.
output
(
'Out'
)[
0
]
for
op
in
avg_cost
.
block
.
ops
if
op
.
type
==
'mul'
optimizer
.
minimize
(
avg_cost
)
]
self
.
assertIn
(
'lars_momentum'
,
ops
)
self
.
assertIn
(
'subprog'
,
''
.
join
(
outs
))
def
test_recompute_lamb_optimizer
(
self
):
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
self
.
set_strategy
(
strategy
,
'recompute'
)
self
.
set_strategy
(
strategy
,
'lamb'
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
,
'adam'
)
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
outs
=
[
op
.
output
(
'Out'
)[
0
]
for
op
in
avg_cost
.
block
.
ops
if
op
.
type
==
'mul'
]
self
.
assertIn
(
'lamb'
,
ops
)
self
.
assertIn
(
'subprog'
,
''
.
join
(
outs
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录