Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0daa69d4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0daa69d4
编写于
11月 17, 2021
作者:
L
LiYuRio
提交者:
GitHub
11月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Fleet Executor] Construct runtime graph (#37158)
上级
762819a8
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
364 addition
and
12 deletion
+364
-12
paddle/fluid/distributed/fleet_executor/CMakeLists.txt
paddle/fluid/distributed/fleet_executor/CMakeLists.txt
+1
-1
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
+3
-1
paddle/fluid/distributed/fleet_executor/fleet_executor_desc.proto
...luid/distributed/fleet_executor/fleet_executor_desc.proto
+3
-0
paddle/fluid/distributed/fleet_executor/runtime_graph.cc
paddle/fluid/distributed/fleet_executor/runtime_graph.cc
+221
-0
paddle/fluid/distributed/fleet_executor/runtime_graph.h
paddle/fluid/distributed/fleet_executor/runtime_graph.h
+30
-1
paddle/fluid/distributed/fleet_executor/task_node.cc
paddle/fluid/distributed/fleet_executor/task_node.cc
+49
-0
paddle/fluid/distributed/fleet_executor/task_node.h
paddle/fluid/distributed/fleet_executor/task_node.h
+35
-1
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+9
-0
python/paddle/fluid/tests/unittests/test_fleet_executor.py
python/paddle/fluid/tests/unittests/test_fleet_executor.py
+1
-1
python/paddle/fluid/tests/unittests/test_fleet_executor_multi_devices.py
...luid/tests/unittests/test_fleet_executor_multi_devices.py
+12
-7
未找到文件。
paddle/fluid/distributed/fleet_executor/CMakeLists.txt
浏览文件 @
0daa69d4
...
...
@@ -10,7 +10,7 @@ else()
set
(
BRPC_DEPS
""
)
endif
()
cc_library
(
fleet_executor SRCS fleet_executor.cc carrier.cc
cc_library
(
fleet_executor SRCS fleet_executor.cc carrier.cc
task_node.cc runtime_graph.cc
interceptor.cc interceptor_message_service.cc message_bus.cc
DEPS proto_desc fleet_executor_desc_proto interceptor_message_proto
${
BRPC_DEPS
}
)
...
...
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
浏览文件 @
0daa69d4
...
...
@@ -15,6 +15,8 @@
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/message_bus.h"
#include "paddle/fluid/distributed/fleet_executor/runtime_graph.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
namespace
paddle
{
...
...
@@ -31,7 +33,7 @@ FleetExecutor::~FleetExecutor() {
}
void
FleetExecutor
::
Init
(
const
paddle
::
framework
::
ProgramDesc
&
program_desc
)
{
// Compile and Initialize
runtime_graph_
=
std
::
make_unique
<
RuntimeGraph
>
(
program_desc
,
exe_desc_
);
InitMessageBus
();
}
...
...
paddle/fluid/distributed/fleet_executor/fleet_executor_desc.proto
浏览文件 @
0daa69d4
...
...
@@ -24,4 +24,7 @@ message FleetExecutorDesc {
optional
string
grain
=
1
[
default
=
"coarse"
];
optional
int64
cur_rank
=
2
[
default
=
0
];
// Rank id of current processor
repeated
RankInfo
cluster_info
=
3
;
optional
int32
dp_degree
=
4
[
default
=
1
];
optional
int32
mp_degree
=
5
[
default
=
1
];
optional
int32
pp_degree
=
6
[
default
=
1
];
}
paddle/fluid/distributed/fleet_executor/runtime_graph.cc
0 → 100644
浏览文件 @
0daa69d4
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/distributed/fleet_executor/runtime_graph.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
namespace
paddle
{
namespace
distributed
{
namespace
{
using
OperatorBase
=
RuntimeGraph
::
OperatorBase
;
using
OpRole
=
paddle
::
framework
::
OpRole
;
using
OpRegistry
=
paddle
::
framework
::
OpRegistry
;
using
ProgramDesc
=
paddle
::
framework
::
ProgramDesc
;
bool
IsForward
(
int64_t
op_role
)
{
return
(
op_role
==
static_cast
<
int64_t
>
(
OpRole
::
kForward
))
||
(
op_role
==
(
static_cast
<
int64_t
>
(
OpRole
::
kForward
)
|
static_cast
<
int64_t
>
(
OpRole
::
kLoss
)));
}
bool
IsLRSched
(
int64_t
op_role
)
{
return
op_role
==
static_cast
<
int64_t
>
(
OpRole
::
kLRSched
);
}
bool
IsBackward
(
int64_t
op_role
)
{
return
(
op_role
==
static_cast
<
int64_t
>
(
OpRole
::
kBackward
))
||
(
op_role
==
(
static_cast
<
int64_t
>
(
OpRole
::
kBackward
)
|
static_cast
<
int64_t
>
(
OpRole
::
kLoss
)));
}
bool
IsOptimize
(
int64_t
op_role
)
{
return
op_role
==
static_cast
<
int64_t
>
(
OpRole
::
kOptimize
);
}
struct
DistCoord
{
int32_t
dp_idx
;
int32_t
pp_idx
;
int32_t
mp_idx
;
};
class
DistCoordSys
final
{
public:
DistCoordSys
(
int32_t
dp_degree
,
int32_t
pp_degree
,
int32_t
mp_degree
)
:
dp_degree_
(
dp_degree
),
pp_degree_
(
pp_degree
),
mp_degree_
(
mp_degree
)
{}
DistCoord
RankToCoord
(
int64_t
rank
)
const
;
int64_t
CoordToRank
(
const
DistCoord
&
coord
)
const
;
private:
DISABLE_COPY_AND_ASSIGN
(
DistCoordSys
);
bool
InvalidCoord
(
const
DistCoord
&
coord
)
const
;
int32_t
dp_degree_
;
int32_t
pp_degree_
;
int32_t
mp_degree_
;
};
DistCoord
DistCoordSys
::
RankToCoord
(
int64_t
rank
)
const
{
DistCoord
coord
;
coord
.
mp_idx
=
rank
%
mp_degree_
;
rank
/=
mp_degree_
;
coord
.
pp_idx
=
rank
%
pp_degree_
;
rank
/=
pp_degree_
;
coord
.
dp_idx
=
rank
%
dp_degree_
;
return
coord
;
}
int64_t
DistCoordSys
::
CoordToRank
(
const
DistCoord
&
coord
)
const
{
if
(
InvalidCoord
(
coord
))
{
return
-
1
;
}
return
coord
.
dp_idx
*
pp_degree_
*
mp_degree_
+
coord
.
pp_idx
*
mp_degree_
+
coord
.
mp_idx
;
}
bool
DistCoordSys
::
InvalidCoord
(
const
DistCoord
&
coord
)
const
{
return
coord
.
mp_idx
<
0
||
coord
.
mp_idx
>=
mp_degree_
||
coord
.
pp_idx
<
0
||
coord
.
pp_idx
>=
pp_degree_
||
coord
.
dp_idx
<
0
||
coord
.
dp_idx
>=
dp_degree_
;
}
}
// namespace
std
::
vector
<
OpRole
>
RuntimeGraph
::
functionality_order
=
{
OpRole
::
kLRSched
,
OpRole
::
kForward
,
OpRole
::
kBackward
,
OpRole
::
kOptimize
};
RuntimeGraph
::
RuntimeGraph
(
const
ProgramDesc
&
program
,
const
FleetExecutorDesc
&
exe_desc
)
:
exe_desc_
(
exe_desc
)
{
if
(
exe_desc
.
grain
()
==
"coarse"
)
{
SplitProgramBasedFunctionality
(
program
);
AssignTaskToIntercepter
();
FakeDependence
();
FakeRuntimeInfo
();
}
}
void
RuntimeGraph
::
SplitProgramBasedFunctionality
(
const
ProgramDesc
&
program
)
{
for
(
const
auto
&
op_desc
:
program
.
Block
(
0
).
AllOps
())
{
ops_
.
emplace_back
(
OpRegistry
::
CreateOp
(
*
op_desc
));
}
std
::
unordered_map
<
int64_t
,
std
::
vector
<
OperatorBase
*>>
role_to_ops
;
for
(
const
auto
&
op
:
ops_
)
{
int64_t
op_role
=
op
->
Attr
<
int64_t
>
(
"op_role"
);
OpRole
new_op_role
;
if
(
IsLRSched
(
op_role
))
{
new_op_role
=
OpRole
::
kLRSched
;
}
else
if
(
IsForward
(
op_role
))
{
new_op_role
=
OpRole
::
kForward
;
}
else
if
(
IsBackward
(
op_role
))
{
new_op_role
=
OpRole
::
kBackward
;
}
else
if
(
IsOptimize
(
op_role
))
{
new_op_role
=
OpRole
::
kOptimize
;
}
else
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"The op %s is None of LRSched, Forward, Backward or Optimize."
,
op
->
Type
()));
}
int64_t
new_op_role_id
=
static_cast
<
int64_t
>
(
new_op_role
);
if
(
role_to_ops
.
find
(
new_op_role_id
)
==
role_to_ops
.
end
())
{
role_to_ops
.
insert
({
new_op_role_id
,
{}});
}
role_to_ops
.
at
(
new_op_role_id
).
emplace_back
(
op
.
get
());
}
int64_t
cur_rank
=
exe_desc_
.
cur_rank
();
int64_t
task_id
=
cur_rank
*
functionality_order
.
size
();
for
(
std
::
size_t
i
=
0
;
i
<
functionality_order
.
size
();
++
i
)
{
OpRole
role
=
functionality_order
[
i
];
int64_t
role_id
=
static_cast
<
int64_t
>
(
role
);
if
(
role_to_ops
.
find
(
role_id
)
==
role_to_ops
.
end
())
{
task_nodes_
.
emplace_back
(
TaskNode
::
CreateEmptyTaskNode
(
role_id
,
cur_rank
,
task_id
));
}
else
{
task_nodes_
.
emplace_back
(
TaskNode
::
CreateTaskNode
(
role_id
,
role_to_ops
.
at
(
role_id
),
cur_rank
,
task_id
));
}
++
task_id
;
}
}
void
RuntimeGraph
::
FakeDependence
()
{
int64_t
cur_rank
=
exe_desc_
.
cur_rank
();
DistCoordSys
coord_sys
(
exe_desc_
.
dp_degree
(),
exe_desc_
.
pp_degree
(),
exe_desc_
.
mp_degree
());
const
auto
&
coord
=
coord_sys
.
RankToCoord
(
cur_rank
);
DistCoord
upstream_coord
=
coord
,
downstream_coord
=
coord
;
upstream_coord
.
pp_idx
-=
1
;
downstream_coord
.
pp_idx
+=
1
;
int64_t
pp_upstream
=
coord_sys
.
CoordToRank
(
upstream_coord
);
int64_t
pp_downstream
=
coord_sys
.
CoordToRank
(
downstream_coord
);
int32_t
num_of_functionality
=
functionality_order
.
size
();
// lr -> forward -> backward -> optimize
// | |
// lr -> forward -> backward -> optimize
for
(
std
::
size_t
i
=
0
;
i
<
task_nodes_
.
size
();
++
i
)
{
if
(
i
!=
0
)
{
task_nodes_
[
i
]
->
AddUpstreamTask
(
cur_rank
*
num_of_functionality
+
i
-
1
);
}
if
(
i
!=
task_nodes_
.
size
()
-
1
)
{
task_nodes_
[
i
]
->
AddDownstreamTask
(
cur_rank
*
num_of_functionality
+
i
+
1
);
}
if
(
IsForward
(
task_nodes_
[
i
]
->
role
()))
{
if
(
pp_upstream
!=
-
1
)
{
task_nodes_
[
i
]
->
AddUpstreamTask
(
pp_upstream
*
num_of_functionality
+
i
);
}
if
(
pp_downstream
!=
-
1
)
{
task_nodes_
[
i
]
->
AddDownstreamTask
(
pp_downstream
*
num_of_functionality
+
i
);
}
}
else
if
(
IsBackward
(
task_nodes_
[
i
]
->
role
()))
{
if
(
pp_downstream
!=
-
1
)
{
task_nodes_
[
i
]
->
AddUpstreamTask
(
pp_downstream
*
num_of_functionality
+
i
);
}
if
(
pp_upstream
!=
-
1
)
{
task_nodes_
[
i
]
->
AddDownstreamTask
(
pp_upstream
*
num_of_functionality
+
i
);
}
}
}
}
void
RuntimeGraph
::
AssignTaskToIntercepter
()
{
for
(
const
auto
&
task
:
task_nodes_
)
{
int64_t
intercepter_id
=
task
->
task_id
();
if
(
intercepter_id_to_node_
.
find
(
intercepter_id
)
!=
intercepter_id_to_node_
.
end
())
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"Repeated intercepter id: %d"
,
intercepter_id
));
}
intercepter_id_to_node_
.
insert
({
intercepter_id
,
task
.
get
()});
}
}
void
RuntimeGraph
::
FakeRuntimeInfo
()
{
int64_t
nrank
=
exe_desc_
.
cluster_info
().
size
();
int32_t
num_of_functionality
=
functionality_order
.
size
();
for
(
int64_t
i
=
0
;
i
<
nrank
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
num_of_functionality
;
++
j
)
{
int64_t
intercepter_id
=
i
*
num_of_functionality
+
j
;
intercepter_id_to_rank_
.
insert
({
intercepter_id
,
i
});
}
}
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/fleet_executor/runtime_graph.h
浏览文件 @
0daa69d4
...
...
@@ -13,21 +13,50 @@
// limitations under the License.
#pragma once
#include <memory>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/platform/macros.h"
namespace
paddle
{
namespace
framework
{
class
ProgramDesc
;
class
OperatorBase
;
}
namespace
distributed
{
class
TaskNode
;
class
RuntimeGraph
final
{
public:
using
ProgramDesc
=
paddle
::
framework
::
ProgramDesc
;
using
OperatorBase
=
paddle
::
framework
::
OperatorBase
;
RuntimeGraph
()
=
default
;
explicit
RuntimeGraph
(
const
paddle
::
framework
::
ProgramDesc
&
program
)
{}
explicit
RuntimeGraph
(
const
ProgramDesc
&
program
,
const
FleetExecutorDesc
&
exe_desc
);
~
RuntimeGraph
()
=
default
;
const
std
::
unordered_map
<
int64_t
,
TaskNode
*>&
intercepter_id_to_node
()
const
{
return
intercepter_id_to_node_
;
}
const
std
::
unordered_map
<
int64_t
,
int64_t
>&
intercepter_id_to_rank
()
const
{
return
intercepter_id_to_rank_
;
}
private:
DISABLE_COPY_AND_ASSIGN
(
RuntimeGraph
);
void
SplitProgramBasedFunctionality
(
const
ProgramDesc
&
program
);
void
FakeDependence
();
void
AssignTaskToIntercepter
();
void
FakeRuntimeInfo
();
// LRSched, Forward, Backward, Optimize
static
std
::
vector
<
paddle
::
framework
::
OpRole
>
functionality_order
;
std
::
vector
<
std
::
unique_ptr
<
TaskNode
>>
task_nodes_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
std
::
unordered_map
<
int64_t
,
TaskNode
*>
intercepter_id_to_node_
;
std
::
unordered_map
<
int64_t
,
int64_t
>
intercepter_id_to_rank_
;
FleetExecutorDesc
exe_desc_
;
};
}
// namespace distributed
...
...
paddle/fluid/distributed/fleet_executor/task_node.cc
0 → 100644
浏览文件 @
0daa69d4
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
namespace
distributed
{
namespace
{
using
OperatorBase
=
TaskNode
::
OperatorBase
;
}
TaskNode
::
TaskNode
(
int64_t
role
,
const
std
::
vector
<
OperatorBase
*>&
ops
,
int64_t
rank
,
int64_t
task_id
)
:
ops_
(
ops
),
role_
(
role
),
rank_
(
rank
),
task_id_
(
task_id
)
{}
TaskNode
::
TaskNode
(
int64_t
role
,
int64_t
rank
,
int64_t
task_id
)
:
role_
(
role
),
rank_
(
rank
),
task_id_
(
task_id
)
{}
std
::
unique_ptr
<
TaskNode
>
TaskNode
::
CreateEmptyTaskNode
(
int64_t
role
,
int64_t
rank
,
int64_t
task_id
)
{
return
std
::
make_unique
<
TaskNode
>
(
role
,
rank
,
task_id
);
}
std
::
unique_ptr
<
TaskNode
>
TaskNode
::
CreateTaskNode
(
int64_t
role
,
const
std
::
vector
<
OperatorBase
*>&
ops
,
int64_t
rank
,
int64_t
task_id
)
{
return
std
::
make_unique
<
TaskNode
>
(
role
,
ops
,
rank
,
task_id
);
}
void
TaskNode
::
AddUpstreamTask
(
int64_t
task_id
)
{
upstream_
.
insert
(
task_id
);
}
void
TaskNode
::
AddDownstreamTask
(
int64_t
task_id
)
{
downstream_
.
insert
(
task_id
);
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/fleet_executor/task_node.h
浏览文件 @
0daa69d4
...
...
@@ -13,14 +13,48 @@
// limitations under the License.
#pragma once
#include <cstdint>
#include <memory>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/platform/macros.h"
namespace
paddle
{
namespace
framework
{
class
OperatorBase
;
}
namespace
distributed
{
class
TaskNode
final
{
public:
TaskNode
()
=
default
;
using
OperatorBase
=
paddle
::
framework
::
OperatorBase
;
TaskNode
(
int64_t
role
,
int64_t
rank
,
int64_t
task_id
);
TaskNode
(
int64_t
role
,
const
std
::
vector
<
OperatorBase
*>&
ops
,
int64_t
rank
,
int64_t
task_id
);
~
TaskNode
()
=
default
;
int64_t
rank
()
const
{
return
rank_
;
}
int64_t
task_id
()
const
{
return
task_id_
;
}
int64_t
role
()
const
{
return
role_
;
}
const
std
::
unordered_set
<
int64_t
>&
upstream
()
const
{
return
upstream_
;
}
const
std
::
unordered_set
<
int64_t
>&
downstream
()
const
{
return
downstream_
;
}
void
AddUpstreamTask
(
int64_t
task_id
);
void
AddDownstreamTask
(
int64_t
task_id
);
static
std
::
unique_ptr
<
TaskNode
>
CreateEmptyTaskNode
(
int64_t
role
,
int64_t
rank
,
int64_t
task_id
);
static
std
::
unique_ptr
<
TaskNode
>
CreateTaskNode
(
int64_t
role
,
const
std
::
vector
<
OperatorBase
*>&
ops
,
int64_t
rank
,
int64_t
task_id
);
private:
DISABLE_COPY_AND_ASSIGN
(
TaskNode
);
TaskNode
()
=
default
;
std
::
vector
<
OperatorBase
*>
ops_
;
std
::
unordered_set
<
int64_t
>
upstream_
;
std
::
unordered_set
<
int64_t
>
downstream_
;
int64_t
role_
;
int64_t
rank_
;
int64_t
task_id_
;
};
}
// namespace distributed
...
...
python/paddle/fluid/executor.py
浏览文件 @
0daa69d4
...
...
@@ -1890,6 +1890,7 @@ class Executor(object):
cur_rank
=
os
.
getenv
(
"PADDLE_TRAINER_ID"
)
trainer_endpoints_str
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
fleet_exe_desc
=
fleet_executor_desc_pb2
.
FleetExecutorDesc
()
nrank
=
1
if
cur_rank
and
trainer_endpoints_str
:
fleet_exe_desc
.
cur_rank
=
int
(
cur_rank
)
trainer_endpoints
=
trainer_endpoints_str
.
split
(
','
)
...
...
@@ -1898,8 +1899,16 @@ class Executor(object):
rank_info
.
rank
=
rank
rank_info
.
ip_port
=
endpoint
fleet_exe_desc
.
cluster_info
.
append
(
rank_info
)
nrank
=
len
(
trainer_endpoints
)
else
:
logging
.
warning
(
"Fleet Executor will run on single device only."
)
fleet_opt
=
program
.
_pipeline_opt
[
"fleet_opt"
]
if
"dist_strategy"
in
fleet_opt
:
fleet_exe_desc
.
dp_degree
=
fleet_opt
[
"dist_strategy"
][
"dp_degree"
]
fleet_exe_desc
.
mp_degree
=
fleet_opt
[
"dist_strategy"
][
"mp_degree"
]
fleet_exe_desc
.
pp_degree
=
fleet_opt
[
"dist_strategy"
][
"pp_degree"
]
num_of_gpu
=
fleet_exe_desc
.
dp_degree
*
fleet_exe_desc
.
mp_degree
*
fleet_exe_desc
.
pp_degree
assert
nrank
==
num_of_gpu
,
"The number of rank is not equal to the number of gpu."
fleet_exe
=
core
.
FleetExecutor
(
fleet_exe_desc
.
SerializeToString
())
fleet_exe
.
init
(
program
.
_pipeline_opt
[
"section_program"
].
desc
)
fleet_exe
.
run
()
...
...
python/paddle/fluid/tests/unittests/test_fleet_executor.py
浏览文件 @
0daa69d4
...
...
@@ -26,7 +26,7 @@ class TestFleetExecutor(unittest.TestCase):
with
fluid
.
program_guard
(
empty_program
,
empty_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1
],
dtype
=
paddle
.
float32
)
empty_program
.
_pipeline_opt
=
{
"fleet_opt"
:
True
,
"fleet_opt"
:
{}
,
"section_program"
:
empty_program
}
exe
.
run
(
empty_program
,
feed
=
{
'x'
:
[
1
]})
...
...
python/paddle/fluid/tests/unittests/test_fleet_executor_multi_devices.py
浏览文件 @
0daa69d4
...
...
@@ -16,18 +16,19 @@ import unittest
import
os
import
paddle
import
paddle.fluid
as
fluid
import
paddle.distributed.fleet
as
fleet
paddle
.
enable_static
()
class
TestFleetExecutor
(
unittest
.
TestCase
):
def
run_fleet_executor
(
self
,
place
):
def
run_fleet_executor
(
self
,
place
,
fleet_opt
=
dict
()
):
exe
=
paddle
.
static
.
Executor
(
place
)
empty_program
=
paddle
.
static
.
Program
()
with
fluid
.
program_guard
(
empty_program
,
empty_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1
],
dtype
=
paddle
.
float32
)
empty_program
.
_pipeline_opt
=
{
"fleet_opt"
:
True
,
"fleet_opt"
:
fleet_opt
,
"section_program"
:
empty_program
}
exe
.
run
(
empty_program
,
feed
=
{
'x'
:
[
1
]})
...
...
@@ -35,12 +36,16 @@ class TestFleetExecutor(unittest.TestCase):
def
test_dist_executor_on_multi_devices
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:7000,127.0.0.1:7001,127.0.0.1:7002"
places
=
[
fluid
.
CPUPlace
()]
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:7000,127.0.0.1:7001,127.0.0.1:7002,127.0.0.1:7003,127.0.0.1:7004,127.0.0.1:7005,127.0.0.1:7006,127.0.0.1:7007"
strategy
=
fleet
.
DistributedStrategy
()
strategy
.
sharding_configs
=
{
"dp_degree"
:
2
,
"mp_degree"
:
2
,
"pp_degree"
:
2
}
fleet_opt
=
{
"dist_strategy"
:
strategy
.
sharding_configs
}
if
fluid
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
run_fleet_executor
(
place
)
self
.
run_fleet_executor
(
fluid
.
CUDAPlace
(
0
),
fleet_opt
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录