Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0caa08ea
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0caa08ea
编写于
7月 09, 2019
作者:
P
Physher
提交者:
Tao Luo
7月 09, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add mkldnn int8 mul-op kernel (#17834)
上级
ac81c81b
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
666 addition
and
1 deletion
+666
-1
paddle/fluid/operators/mkldnn/mul_mkldnn_op.cc
paddle/fluid/operators/mkldnn/mul_mkldnn_op.cc
+433
-0
paddle/fluid/operators/mul_op.cc
paddle/fluid/operators/mul_op.cc
+52
-0
paddle/fluid/operators/mul_op.h
paddle/fluid/operators/mul_op.h
+2
-0
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+11
-0
python/paddle/fluid/tests/unittests/mkldnn/test_mul_int8_mkldnn_op.py
...e/fluid/tests/unittests/mkldnn/test_mul_int8_mkldnn_op.py
+166
-0
python/paddle/fluid/tests/unittests/test_operator_desc.py
python/paddle/fluid/tests/unittests/test_operator_desc.py
+2
-1
未找到文件。
paddle/fluid/operators/mkldnn/mul_mkldnn_op.cc
0 → 100644
浏览文件 @
0caa08ea
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
DataLayout
;
using
framework
::
DDim
;
using
framework
::
ExecutionContext
;
using
framework
::
Tensor
;
using
mkldnn
::
inner_product_forward
;
using
mkldnn
::
memory
;
using
mkldnn
::
prop_kind
;
using
mkldnn
::
stream
;
using
platform
::
MKLDNNDeviceContext
;
using
platform
::
to_void_cast
;
template
<
typename
XT
,
typename
YT
,
typename
OT
>
class
MulPrimitiveFactory
{
public:
explicit
MulPrimitiveFactory
(
const
mkldnn
::
engine
&
engine
)
:
engine_
(
engine
)
{}
virtual
~
MulPrimitiveFactory
()
{}
virtual
inner_product_forward
CreateMulPrimitive
(
const
Tensor
*
input_x
,
const
Tensor
*
input_y
,
Tensor
*
output
,
const
ExecutionContext
&
ctx
)
{
/* check format and reorder if need */
int
x_num_col_dims
=
ctx
.
Attr
<
int
>
(
"x_num_col_dims"
);
int
y_num_col_dims
=
ctx
.
Attr
<
int
>
(
"y_num_col_dims"
);
auto
x_matrix
=
UpdateDataFormat
<
XT
>
(
input_x
,
x_num_col_dims
,
ctx
);
auto
y_matrix
=
UpdateDataFormat
<
YT
>
(
input_y
,
y_num_col_dims
,
ctx
);
auto
output_dim
=
output
->
dims
();
if
(
output_dim
.
size
()
!=
2
)
{
output
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
if
(
mul_
)
{
UpdateDataPointers
(
ctx
,
output
,
&
x_matrix
);
return
*
mul_
;
}
auto
src_desc
=
CreateMemDescriptor
<
XT
>
(
&
x_matrix
,
memory
::
format
::
nc
);
x_input_
=
CreateMemory
<
XT
>
(
src_desc
,
&
x_matrix
);
y_input_
=
TransposeInputY
(
&
y_matrix
);
auto
dst_desc
=
CreateMemDescriptor
<
OT
>
(
output
,
memory
::
format
::
any
);
mul_
=
CreateMulPrimitive
(
*
x_input_
,
*
y_input_
,
dst_desc
,
output
,
ctx
);
return
*
mul_
;
}
protected:
template
<
typename
T
>
Tensor
UpdateDataFormat
(
const
Tensor
*
data
,
int
num_col_dims
,
const
ExecutionContext
&
ctx
)
{
Tensor
x_tmp
;
Tensor
data_matrix
;
memory
::
format
src_fmt
=
data
->
format
();
memory
::
format
dst_fmt
;
auto
src_mdesc
=
CreateMemDescriptor
<
T
>
(
data
,
src_fmt
);
if
((
data
->
dims
().
size
()
==
4
&&
src_fmt
!=
(
dst_fmt
=
memory
::
format
::
nchw
))
||
(
data
->
dims
().
size
()
==
5
&&
dst_fmt
!=
(
dst_fmt
=
memory
::
format
::
ncdhw
)))
{
auto
dst_mdesc
=
CreateMemDescriptor
<
T
>
(
data
,
dst_fmt
);
x_tmp
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
data
->
memory_size
());
Reorder
(
src_mdesc
,
dst_mdesc
,
to_void_cast
<
T
>
(
data
->
data
<
T
>
()),
to_void_cast
<
T
>
(
x_tmp
.
data
<
T
>
()));
x_tmp
.
Resize
(
data
->
dims
());
x_tmp
.
set_format
((
memory
::
format
)
dst_mdesc
.
data
.
format
);
data_matrix
=
framework
::
ReshapeToMatrix
(
x_tmp
,
num_col_dims
);
}
else
{
data_matrix
=
framework
::
ReshapeToMatrix
(
*
data
,
num_col_dims
);
}
return
data_matrix
;
}
void
UpdateDataPointers
(
const
ExecutionContext
&
ctx
,
Tensor
*
out
,
const
Tensor
*
in
)
{
x_input_
->
set_data_handle
(
to_void_cast
<
XT
>
(
in
->
data
<
XT
>
()));
output_
->
set_data_handle
(
out
->
mutable_data
<
OT
>
(
ctx
.
GetPlace
()));
if
(
out
->
format
()
==
memory
::
format
::
format_undef
)
{
auto
output_format
=
output_
->
get_primitive_desc
().
desc
().
data
.
format
;
out
->
set_format
((
memory
::
format
)
output_format
);
}
}
template
<
typename
T
>
memory
::
desc
CreateMemDescriptor
(
const
Tensor
*
tensor
,
memory
::
format
format
,
memory
::
data_type
type
=
platform
::
MKLDNNGetDataType
<
T
>
())
{
auto
dims
=
framework
::
vectorize2int
(
tensor
->
dims
());
return
platform
::
MKLDNNMemDesc
(
dims
,
type
,
format
);
}
template
<
typename
T
>
memory
::
desc
CreateMemDescriptor
(
const
std
::
vector
<
int
>
&
dims
,
memory
::
format
format
,
memory
::
data_type
type
=
platform
::
MKLDNNGetDataType
<
T
>
())
{
return
platform
::
MKLDNNMemDesc
(
dims
,
type
,
format
);
}
template
<
typename
T
>
memory
CreateMemory
(
const
memory
::
desc
&
desc
,
const
Tensor
*
tensor
)
{
return
memory
({
desc
,
engine_
},
to_void_cast
<
T
>
(
tensor
->
data
<
T
>
()));
}
memory
CreateDstMemory
(
const
inner_product_forward
::
primitive_desc
&
mul_prim_desc
,
const
ExecutionContext
&
ctx
,
Tensor
*
output
)
{
auto
dst_prim_desc
=
mul_prim_desc
.
dst_primitive_desc
();
auto
buffer_size
=
dst_prim_desc
.
get_size
();
OT
*
output_data
=
output
->
mutable_data
<
OT
>
(
ctx
.
GetPlace
(),
buffer_size
);
output
->
set_format
((
memory
::
format
)
dst_prim_desc
.
desc
().
data
.
format
);
return
memory
(
dst_prim_desc
,
to_void_cast
<
OT
>
(
output_data
));
}
memory
Reorder
(
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
dst_desc
,
void
*
src_data
,
void
*
dst_data
=
NULL
)
{
auto
src_mem
=
memory
({
src_desc
,
engine_
},
src_data
);
auto
dst_mem
=
dst_data
?
memory
({
dst_desc
,
engine_
},
dst_data
)
:
memory
({
dst_desc
,
engine_
});
auto
reorder
=
mkldnn
::
reorder
(
src_mem
,
dst_mem
);
stream
(
stream
::
kind
::
eager
).
submit
({
reorder
}).
wait
();
return
dst_mem
;
}
memory
TransposeInputY
(
const
Tensor
*
input_y
)
{
auto
dims
=
framework
::
vectorize2int
(
input_y
->
dims
());
std
::
swap
(
dims
[
0
],
dims
[
1
]);
// Correct output dimensions
auto
src_desc
=
CreateMemDescriptor
<
YT
>
(
dims
,
memory
::
format
::
io
);
auto
dst_desc
=
CreateMemDescriptor
<
YT
>
(
dims
,
memory
::
format
::
oi
);
return
Reorder
(
src_desc
,
dst_desc
,
to_void_cast
<
YT
>
(
input_y
->
data
<
YT
>
()));
}
inner_product_forward
CreateMulPrimitive
(
const
memory
&
x_memory
,
const
memory
&
y_memory
,
const
memory
::
desc
&
dst_desc
,
Tensor
*
output
,
const
ExecutionContext
&
ctx
)
{
const
auto
y_desc
=
y_memory
.
get_primitive_desc
().
desc
();
const
auto
x_desc
=
x_memory
.
get_primitive_desc
().
desc
();
auto
mul_prim_desc
=
CreateMulPrimDesc
(
x_desc
,
y_desc
,
dst_desc
);
output_
=
CreateDstMemory
(
mul_prim_desc
,
ctx
,
output
);
return
inner_product_forward
(
mul_prim_desc
,
x_memory
,
y_memory
,
*
output_
);
}
inner_product_forward
::
primitive_desc
CreateMulPrimDesc
(
const
memory
::
desc
&
x_desc
,
const
memory
::
desc
&
y_desc
,
const
memory
::
desc
&
dst_desc
)
{
auto
mul_desc
=
inner_product_forward
::
desc
(
prop_kind
::
forward
,
x_desc
,
y_desc
,
dst_desc
);
return
inner_product_forward
::
primitive_desc
(
mul_desc
,
engine_
);
}
protected:
const
mkldnn
::
engine
&
engine_
;
boost
::
optional
<
memory
>
x_input_
;
boost
::
optional
<
memory
>
y_input_
;
boost
::
optional
<
memory
>
output_
;
boost
::
optional
<
inner_product_forward
>
mul_
;
};
// namespace operators
template
<
typename
XT
,
typename
YT
,
typename
OT
>
class
QuantMulPrimitiveFactory
:
public
MulPrimitiveFactory
<
XT
,
YT
,
OT
>
{
public:
using
MulPrimitiveFactory
<
XT
,
YT
,
OT
>::
MulPrimitiveFactory
;
virtual
inner_product_forward
CreateMulPrimitive
(
const
Tensor
*
x_input
,
const
Tensor
*
y_input
,
Tensor
*
output
,
const
ExecutionContext
&
ctx
)
{
/* check data format and reorder if need */
int
x_num_col_dims
=
ctx
.
Attr
<
int
>
(
"x_num_col_dims"
);
int
y_num_col_dims
=
ctx
.
Attr
<
int
>
(
"y_num_col_dims"
);
auto
scale_y
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale_y"
);
auto
x_matrix
=
this
->
template
UpdateDataFormat
<
XT
>(
x_input
,
x_num_col_dims
,
ctx
);
auto
y_matrix
=
this
->
template
UpdateDataFormat
<
YT
>(
y_input
,
y_num_col_dims
,
ctx
);
auto
output_dim
=
output
->
dims
();
if
(
output_dim
.
size
()
!=
2
)
{
output
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
if
(
this
->
mul_
)
{
this
->
UpdateDataPointers
(
ctx
,
output
,
&
x_matrix
);
return
*
(
this
->
mul_
);
}
auto
src_desc
=
this
->
template
CreateMemDescriptor
<
XT
>(
&
x_matrix
,
memory
::
format
::
nc
);
this
->
x_input_
=
this
->
template
CreateMemory
<
XT
>(
src_desc
,
&
x_matrix
);
const
auto
trans_y
=
this
->
TransposeInputY
(
&
y_matrix
);
this
->
y_input_
=
QuantInputY
(
trans_y
,
scale_y
);
auto
dst_desc
=
this
->
template
CreateMemDescriptor
<
OT
>(
output
,
memory
::
format
::
any
);
this
->
mul_
=
CreateMulPrimitive
(
*
(
this
->
x_input_
),
*
(
this
->
y_input_
),
dst_desc
,
output
,
ctx
);
return
*
(
this
->
mul_
);
}
memory
ReorderWithScale
(
const
memory
::
desc
&
src_desc
,
const
memory
::
desc
&
dst_desc
,
void
*
src_data
,
const
std
::
vector
<
float
>
&
scale
)
{
auto
mask
=
scale
.
size
()
>
1
?
1
:
0
;
mkldnn
::
primitive_attr
attr
;
attr
.
set_output_scales
(
mask
,
scale
);
auto
src_mem
=
memory
({
src_desc
,
this
->
engine_
},
src_data
);
auto
dst_mem
=
memory
({
dst_desc
,
this
->
engine_
});
auto
reorder_pd
=
mkldnn
::
reorder
::
primitive_desc
(
src_mem
.
get_primitive_desc
(),
dst_mem
.
get_primitive_desc
(),
attr
);
auto
reorder
=
mkldnn
::
reorder
(
reorder_pd
,
src_mem
,
dst_mem
);
stream
(
stream
::
kind
::
eager
).
submit
({
reorder
}).
wait
();
return
dst_mem
;
}
memory
QuantInputY
(
memory
input_y
,
const
std
::
vector
<
float
>
&
scale_y
)
{
const
auto
&
dims
=
input_y
.
get_primitive_desc
().
desc
().
data
.
dims
;
auto
ndims
=
input_y
.
get_primitive_desc
().
desc
().
data
.
ndims
;
auto
y_dims
=
std
::
vector
<
int
>
(
dims
,
dims
+
ndims
);
auto
user_y_desc
=
this
->
template
CreateMemDescriptor
<
YT
>(
y_dims
,
memory
::
format
::
oi
);
auto
y_desc
=
this
->
template
CreateMemDescriptor
<
int8_t
>(
y_dims
,
memory
::
format
::
oi
);
return
ReorderWithScale
(
user_y_desc
,
y_desc
,
input_y
.
get_data_handle
(),
scale_y
);
}
mkldnn
::
primitive_attr
CreateMulAttr
(
const
ExecutionContext
&
ctx
,
bool
force_fp32_output
)
{
mkldnn
::
primitive_attr
mul_attr
;
auto
scale_y_data
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale_y"
);
auto
scale_x_data
=
ctx
.
Attr
<
float
>
(
"scale_x"
);
auto
scale_out_data
=
force_fp32_output
?
1.0
f
:
ctx
.
Attr
<
float
>
(
"scale_out"
);
bool
is_multi_channel
=
scale_y_data
.
size
()
>
1
;
int
count
=
is_multi_channel
?
scale_y_data
.
size
()
:
1
;
std
::
vector
<
float
>
output_shift_scale
(
count
);
for
(
int
i
=
0
;
i
<
count
;
i
++
)
{
if
(
scale_y_data
[
i
]
==
0.0
)
output_shift_scale
[
i
]
=
scale_out_data
;
else
output_shift_scale
[
i
]
=
scale_out_data
/
(
scale_x_data
*
scale_y_data
[
i
]);
}
int
mul_mask
=
is_multi_channel
?
1
:
0
;
mul_attr
.
set_output_scales
(
mul_mask
,
output_shift_scale
);
return
mul_attr
;
}
inner_product_forward
CreateMulPrimitive
(
const
memory
&
x_memory
,
const
memory
&
y_memory
,
const
memory
::
desc
&
dst_desc
,
Tensor
*
output
,
const
ExecutionContext
&
ctx
)
{
const
auto
x_desc
=
x_memory
.
get_primitive_desc
().
desc
();
const
auto
y_desc
=
y_memory
.
get_primitive_desc
().
desc
();
bool
force_fp32_output
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
mkldnn
::
primitive_attr
mul_attr
=
CreateMulAttr
(
ctx
,
force_fp32_output
);
auto
mul_prim_desc
=
CreateMulPrimDesc
(
x_desc
,
y_desc
,
dst_desc
,
mul_attr
);
this
->
output_
=
this
->
CreateDstMemory
(
mul_prim_desc
,
ctx
,
output
);
return
inner_product_forward
(
mul_prim_desc
,
x_memory
,
y_memory
,
*
(
this
->
output_
));
}
inner_product_forward
::
primitive_desc
CreateMulPrimDesc
(
const
memory
::
desc
&
x_desc
,
const
memory
::
desc
&
y_desc
,
const
memory
::
desc
&
dst_desc
,
const
mkldnn
::
primitive_attr
&
mul_attr
)
{
const
auto
&
mul_desc
=
inner_product_forward
::
desc
(
prop_kind
::
forward
,
x_desc
,
y_desc
,
dst_desc
);
return
inner_product_forward
::
primitive_desc
(
mul_desc
,
mul_attr
,
this
->
engine_
);
}
};
static
std
::
string
GetHash
(
const
Tensor
*
input_x
,
const
Tensor
*
input_y
,
const
std
::
string
&
suffix
)
{
auto
dim2str
=
[](
const
DDim
&
operand_dims
)
{
std
::
string
str
=
""
;
for
(
int
i
=
0
;
i
<
operand_dims
.
size
();
++
i
)
{
str
+=
std
::
to_string
(
operand_dims
[
i
])
+
"-"
;
}
return
str
;
};
std
::
string
hash
=
std
::
to_string
((
unsigned
)
input_x
->
format
())
+
std
::
to_string
((
unsigned
)
input_x
->
type
())
+
dim2str
(
input_x
->
dims
())
+
std
::
to_string
((
unsigned
)
input_y
->
format
())
+
std
::
to_string
((
unsigned
)
input_y
->
type
())
+
dim2str
(
input_y
->
dims
())
+
suffix
;
return
hash
;
}
/* OT: output data type */
template
<
typename
XT
,
typename
YT
,
typename
OT
>
std
::
shared_ptr
<
MulPrimitiveFactory
<
XT
,
YT
,
OT
>>
GetPrimitiveFactory
(
const
MKLDNNDeviceContext
&
dev_ctx
,
const
ExecutionContext
&
ctx
,
const
Tensor
*
input_x
,
const
Tensor
*
input_y
,
const
mkldnn
::
engine
&
mkldnn_engine
,
bool
enable_quant
)
{
const
std
::
string
key
=
GetHash
(
input_x
,
input_y
,
ctx
.
op
().
Output
(
"Out"
));
auto
prim_creator
=
std
::
static_pointer_cast
<
MulPrimitiveFactory
<
XT
,
YT
,
OT
>>
(
dev_ctx
.
GetBlob
(
key
));
if
(
prim_creator
==
nullptr
)
{
prim_creator
=
enable_quant
?
std
::
make_shared
<
QuantMulPrimitiveFactory
<
XT
,
YT
,
OT
>>
(
mkldnn_engine
)
:
std
::
make_shared
<
MulPrimitiveFactory
<
XT
,
YT
,
OT
>>
(
mkldnn_engine
);
dev_ctx
.
SetBlob
(
key
,
prim_creator
);
}
return
prim_creator
;
}
template
<
typename
XT
,
typename
YT
>
inner_product_forward
GetMulPrimitive
(
const
MKLDNNDeviceContext
&
dev_ctx
,
const
ExecutionContext
&
ctx
,
const
Tensor
*
input_x
,
const
Tensor
*
input_y
,
Tensor
*
output
,
const
mkldnn
::
engine
&
mkldnn_engine
)
{
bool
enable_quant
=
std
::
is_same
<
XT
,
int8_t
>::
value
||
std
::
is_same
<
XT
,
uint8_t
>::
value
;
bool
force_fp32_output
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
if
(
enable_quant
&&
!
force_fp32_output
)
{
return
GetPrimitiveFactory
<
XT
,
YT
,
int8_t
>
(
dev_ctx
,
ctx
,
input_x
,
input_y
,
mkldnn_engine
,
enable_quant
)
->
CreateMulPrimitive
(
input_x
,
input_y
,
output
,
ctx
);
}
else
{
return
GetPrimitiveFactory
<
XT
,
YT
,
float
>
(
dev_ctx
,
ctx
,
input_x
,
input_y
,
mkldnn_engine
,
enable_quant
)
->
CreateMulPrimitive
(
input_x
,
input_y
,
output
,
ctx
);
}
}
/* XT: input x data type, YT: input y data type */
template
<
typename
XT
,
typename
YT
>
class
MulMKLDNNKernel
:
public
framework
::
OpKernel
<
XT
>
{
public:
void
Compute
(
const
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
Tensor
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
out_dims
=
out
->
dims
();
auto
mul
=
GetMulPrimitive
<
XT
,
YT
>
(
dev_ctx
,
ctx
,
x
,
y
,
out
,
mkldnn_engine
);
stream
(
stream
::
kind
::
eager
).
submit
({
mul
}).
wait
();
if
(
out_dims
.
size
()
!=
2
)
{
out
->
Resize
(
out_dims
);
}
out
->
set_layout
(
DataLayout
::
kMKLDNN
);
out
->
set_format
(
out
->
format
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
mul
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
U8
,
ops
::
kMULMKLDNNINT8
,
ops
::
MulMKLDNNKernel
<
uint8_t
,
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
mul
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
S8
,
ops
::
kMULMKLDNNINT8
,
ops
::
MulMKLDNNKernel
<
int8_t
,
float
>
);
REGISTER_OP_KERNEL
(
mul
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
MulMKLDNNKernel
<
uint8_t
,
float
>
);
paddle/fluid/operators/mul_op.cc
浏览文件 @
0caa08ea
...
...
@@ -17,6 +17,9 @@ limitations under the License. */
#include <string>
#include <unordered_map>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -76,6 +79,30 @@ class MulOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_dims
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
framework
::
LibraryType
library
=
framework
::
LibraryType
::
kPlain
;
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
int
customized_type_value
=
framework
::
OpKernelType
::
kDefaultCustomizedTypeValue
;
auto
input_data_type
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
();
#ifdef PADDLE_WITH_MKLDNN
if
(
library
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library
=
framework
::
LibraryType
::
kMKLDNN
;
layout
=
framework
::
DataLayout
::
kMKLDNN
;
if
(
input_data_type
==
framework
::
DataTypeTrait
<
int8_t
>::
DataType
||
input_data_type
==
framework
::
DataTypeTrait
<
uint8_t
>::
DataType
)
{
customized_type_value
=
kMULMKLDNNINT8
;
}
}
#endif
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout
,
library
,
customized_type_value
);
}
};
class
MulOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -84,6 +111,9 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"(Tensor), The first input tensor of mul op."
);
AddInput
(
"Y"
,
"(Tensor), The second input tensor of mul op."
);
AddOutput
(
"Out"
,
"(Tensor), The output tensor of mul op."
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
int
>
(
"x_num_col_dims"
,
R"DOC((int, default 1), The mul_op can take tensors with more than two
...
...
@@ -114,6 +144,23 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
)DOC"
)
.
SetDefault
(
1
)
.
EqualGreaterThan
(
1
);
AddAttr
<
float
>
(
"scale_x"
,
"scale_x to used for int8 input data x."
"Only used with MKL-DNN INT8"
)
.
SetDefault
(
1.0
f
);
AddAttr
<
std
::
vector
<
float
>>
(
"scale_y"
,
"scale_y to used for int8 input data y."
"Only used with MKL-DNN INT8"
)
.
SetDefault
({
1.0
f
});
AddAttr
<
float
>
(
"scale_out"
,
"scale_out to be used for int8 output data."
"Only used with MKL-DNN INT8"
)
.
SetDefault
(
1.0
f
);
AddAttr
<
bool
>
(
"force_fp32_output"
,
"(bool, default false) Force quantize kernel output FP32, only "
"used in quantized MKL-DNN."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Mul Operator.
...
...
@@ -237,14 +284,19 @@ class MulDoubleGradMaker : public framework::SingleGradOpDescMaker {
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
mul
,
ops
::
MulOp
,
ops
::
MulOpMaker
,
ops
::
MulOpInferVarType
,
ops
::
MulOpGradMaker
);
REGISTER_OPERATOR
(
mul_grad
,
ops
::
MulGradOp
,
ops
::
MulDoubleGradMaker
);
REGISTER_OPERATOR
(
mul_grad_grad
,
ops
::
MulDoubleGradOp
);
REGISTER_OP_CPU_KERNEL
(
mul
,
ops
::
MulKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MulKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
mul_grad
,
ops
::
MulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
mul_grad_grad
,
ops
::
MulDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
...
...
paddle/fluid/operators/mul_op.h
浏览文件 @
0caa08ea
...
...
@@ -24,6 +24,8 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
constexpr
int
kMULMKLDNNINT8
=
1
;
template
<
typename
DeviceContext
,
typename
T
>
class
MulKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
0caa08ea
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include <mkldnn.h>
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
...
...
@@ -89,6 +90,16 @@ inline mkldnn::memory::data_type MKLDNNGetDataType<float>() {
return
mkldnn
::
memory
::
f32
;
}
template
<
>
inline
mkldnn
::
memory
::
data_type
MKLDNNGetDataType
<
int8_t
>
()
{
return
mkldnn
::
memory
::
s8
;
}
template
<
>
inline
mkldnn
::
memory
::
data_type
MKLDNNGetDataType
<
uint8_t
>
()
{
return
mkldnn
::
memory
::
u8
;
}
inline
void
Reorder
(
const
mkldnn
::
memory
&
src
,
const
mkldnn
::
memory
&
dst
)
{
auto
reorder_prim
=
mkldnn
::
reorder
(
src
,
dst
);
std
::
vector
<
mkldnn
::
primitive
>
pipeline
;
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_mul_int8_mkldnn_op.py
0 → 100644
浏览文件 @
0caa08ea
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
paddle.fluid.tests.unittests.op_test
import
OpTest
'''
test case for s8 * s8
'''
class
TestMKLDNNMulOpS8S8
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
init_kernel_type
()
self
.
init_data_type
()
self
.
init_data
()
self
.
attrs
=
{
"use_mkldnn"
:
self
.
use_mkldnn
,
"scale_x"
:
self
.
scale_x
,
"scale_y"
:
self
.
scale_y
,
"scale_out"
:
self
.
scale_out
,
"force_fp32_output"
:
self
.
force_fp32
,
}
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
force_fp32
=
True
def
init_data_type
(
self
):
self
.
srctype
=
np
.
uint8
self
.
dsttype
=
np
.
float32
if
self
.
force_fp32
else
np
.
int8
def
init_data
(
self
):
self
.
scale_x
=
0.6
self
.
scale_y
=
[
0.8
]
self
.
scale_out
=
1.0
# limit random range inside |-127, 127| to avoid overflow on SKL
if
self
.
srctype
==
np
.
int8
:
A_data
=
np
.
random
.
randint
(
-
127
,
127
,
(
2
,
5
)).
astype
(
np
.
int8
)
else
:
A_data
=
np
.
random
.
randint
(
0
,
127
,
(
2
,
5
)).
astype
(
np
.
uint8
)
B_data
=
np
.
random
.
uniform
(
-
127
,
127
,
(
5
,
3
)).
astype
(
np
.
float32
)
quant_B
=
np
.
round
(
B_data
*
self
.
scale_y
[
0
]).
astype
(
np
.
int
)
output
=
np
.
dot
(
A_data
,
quant_B
)
scale_output_shift
=
(
self
.
scale_out
)
/
\
(
self
.
scale_x
*
self
.
scale_y
[
0
])
if
(
self
.
force_fp32
):
output
=
(
output
*
scale_output_shift
).
astype
(
self
.
dsttype
)
else
:
output
=
np
.
round
(
output
*
scale_output_shift
).
astype
(
self
.
dsttype
)
self
.
inputs
=
{
'X'
:
A_data
,
'Y'
:
B_data
}
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
core
.
CPUPlace
(),
atol
=
0
)
def
test_check_grad_normal
(
self
):
pass
def
test_check_grad_ingore_x
(
self
):
pass
def
test_check_grad_ingore_y
(
self
):
pass
'''
test case for s8 * u8
'''
class
TestMKLDNNMulOpS8U8
(
TestMKLDNNMulOpS8S8
):
def
init_data_type
(
self
):
self
.
srctype
=
np
.
uint8
self
.
dsttype
=
np
.
float32
if
self
.
force_fp32
else
np
.
int8
'''
test case for s8 * s8
'''
class
TestMKLDNNMulOpS8S8WithFlatten
(
TestMKLDNNMulOpS8S8
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
init_kernel_type
()
self
.
init_data_type
()
self
.
init_data
()
self
.
attrs
=
{
"use_mkldnn"
:
self
.
use_mkldnn
,
"scale_x"
:
self
.
scale_x
,
"scale_y"
:
self
.
scale_y
,
"scale_out"
:
self
.
scale_out
,
"force_fp32_output"
:
self
.
force_fp32
,
"x_num_col_dims"
:
2
,
"y_num_col_dims"
:
2
,
}
def
init_data
(
self
):
self
.
scale_x
=
0.6
self
.
scale_y
=
[
0.8
]
self
.
scale_out
=
1.0
# limit random range inside |-127, 127| to avoid overflow on SKL
if
self
.
srctype
==
np
.
int8
:
A_data
=
np
.
random
.
randint
(
-
127
,
127
,
(
3
,
4
,
4
,
3
)).
astype
(
np
.
int8
)
else
:
A_data
=
np
.
random
.
randint
(
0
,
127
,
(
3
,
4
,
4
,
3
)).
astype
(
np
.
uint8
)
B_data
=
np
.
random
.
uniform
(
-
127
,
127
,
(
2
,
6
,
1
,
2
,
3
)).
astype
(
np
.
float32
)
A_data_reshape
=
A_data
.
reshape
(
3
*
4
,
4
*
3
)
B_data_reshape
=
B_data
.
reshape
(
2
*
6
,
1
*
2
*
3
)
quant_B
=
np
.
round
(
B_data_reshape
*
self
.
scale_y
[
0
]).
astype
(
np
.
int
)
output
=
np
.
dot
(
A_data_reshape
,
quant_B
)
scale_output_shift
=
(
self
.
scale_out
)
/
\
(
self
.
scale_x
*
self
.
scale_y
[
0
])
if
(
self
.
force_fp32
):
output
=
(
output
*
scale_output_shift
).
astype
(
self
.
dsttype
)
else
:
output
=
np
.
round
(
output
*
scale_output_shift
).
astype
(
self
.
dsttype
)
output
=
output
.
reshape
(
3
,
4
,
1
,
2
,
3
)
self
.
inputs
=
{
'X'
:
A_data
,
'Y'
:
B_data
}
self
.
outputs
=
{
'Out'
:
output
}
'''
test case for s8 * u8
'''
class
TestMKLDNNMulOpS8U8WithFlatten
(
TestMKLDNNMulOpS8S8WithFlatten
):
def
init_data_type
(
self
):
self
.
srctype
=
np
.
uint8
self
.
dsttype
=
np
.
float32
if
self
.
force_fp32
else
np
.
int8
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_operator_desc.py
浏览文件 @
0caa08ea
...
...
@@ -69,7 +69,8 @@ class TestOperator(unittest.TestCase):
set
(
mul_op
.
attr_names
),
set
([
"x_num_col_dims"
,
"y_num_col_dims"
,
"op_role"
,
"op_role_var"
,
"op_namescope"
,
"op_callstack"
"use_mkldnn"
,
"scale_x"
,
"scale_y"
,
"scale_out"
,
"force_fp32_output"
,
"op_namescope"
,
"op_callstack"
]))
self
.
assertEqual
(
mul_op
.
has_attr
(
"x_num_col_dims"
),
True
)
self
.
assertEqual
(
mul_op
.
attr_type
(
"x_num_col_dims"
),
core
.
AttrType
.
INT
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录