未验证 提交 09f920a2 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference]Add Transpose op TRT converter unittest (#35138)

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller

* add_transpose_teller
上级 c563609a
...@@ -9,7 +9,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -9,7 +9,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <bitset>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle { namespace paddle {
...@@ -43,32 +42,11 @@ class TransposeOpConverter : public OpConverter { ...@@ -43,32 +42,11 @@ class TransposeOpConverter : public OpConverter {
axis[i]--; axis[i]--;
} }
} }
nvinfer1::Permutation perm; nvinfer1::Permutation perm;
for (int i = 0; i < dims; i++) { for (int i = 0; i < dims; i++) {
int j = engine_->with_dynamic_shape() ? i : i + 1; int j = engine_->with_dynamic_shape() ? i : i + 1;
perm.order[i] = axis[j]; perm.order[i] = axis[j];
} }
// Permutation is valid if it has nbDims unique values from range [0,
// nbDims-1]
auto is_valid_permutation = [&](int dims,
const nvinfer1::Permutation& permutation) {
std::bitset<nvinfer1::Dims::MAX_DIMS> found;
for (int i = 0; i < dims; ++i) {
const int x = permutation.order[i];
if ((x < 0) || (x >= dims) || found[x])
return false; // Out of bounds or duplicate
found.set(x);
}
return true;
};
PADDLE_ENFORCE_EQ(is_valid_permutation(dims, perm), true,
platform::errors::InvalidArgument(
"Invalid permutation dimensions for trt transpose op "
"converter: duplicate or out of bound."));
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input); auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
layer->setFirstTranspose(perm); layer->setFirstTranspose(perm);
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
// limitations under the License. // limitations under the License.
#include "paddle/fluid/inference/tensorrt/op_teller.h" #include "paddle/fluid/inference/tensorrt/op_teller.h"
#include <bitset>
#include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/data_layout.h"
...@@ -316,11 +316,36 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8, ...@@ -316,11 +316,36 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
if (op_type == "transpose2" || op_type == "transpose") { if (op_type == "transpose2" || op_type == "transpose") {
if (!desc.HasAttr("axis")) { if (!desc.HasAttr("axis")) {
return false; return false;
} else { }
std::vector<int> axis = std::vector<int> axis =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axis")); BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
if (!with_dynamic_shape && axis[0] != 0) return false; if (!with_dynamic_shape && axis[0] != 0) return false;
if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false; if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;
if (axis[0] == 0 && axis.size() == 2) return false;
auto* block = desc.Block();
auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
int dims = x_shape.size();
std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
for (int i = 0; i < dims; i++) {
perm[i] = axis[i];
}
auto is_valid_permutation = [&](int dims,
const std::vector<int>& permutation) {
std::bitset<nvinfer1::Dims::MAX_DIMS> found;
for (int i = 0; i < dims; ++i) {
const int x = permutation[i];
if ((x < 0) || (x >= dims) || found[x])
return false; // Out of bounds or duplicate
found.set(x);
}
return true;
};
if (!is_valid_permutation(dims, perm)) {
VLOG(3) << "Invalid permutation dimensions for trt transpose op "
"converter: duplicate or out of bound.";
} }
} }
if (op_type == "flatten2" || op_type == "flatten") { if (op_type == "flatten2" || op_type == "flatten") {
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertTransposeTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
outputs = program_config.outputs
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
#The shape of input and axis should be equal.
if len(inputs['transpose_input'].shape) != len(attrs[0]['axis']):
return False
return True
def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
for dims in [2, 3, 4]:
for batch in [1, 2, 4]:
for axis in [[0, 1, 3, 2], [0, 3, 2, 1], [3, 2, 0, 1],
[0, 1, 2, 3], [0, 1, 2], [2, 0, 1], [1, 0],
[0, 1]]:
self.dims = dims
dics = [{"axis": axis}, {}]
ops_config = [{
"op_type": "transpose",
"op_inputs": {
"X": ["transpose_input"]
},
"op_outputs": {
"Out": ["transpose_out"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"transpose_input": TensorConfig(data_gen=partial(
generate_input1, dics, batch))
},
outputs=["transpose_out"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 4:
self.dynamic_shape.min_input_shape = {
"transpose_input": [1, 3, 24, 24]
}
self.dynamic_shape.max_input_shape = {
"transpose_input": [9, 6, 48, 48]
}
self.dynamic_shape.opt_input_shape = {
"transpose_input": [1, 3, 48, 24]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"transpose_input": [1, 3, 24]
}
self.dynamic_shape.max_input_shape = {
"transpose_input": [9, 6, 48]
}
self.dynamic_shape.opt_input_shape = {
"transpose_input": [1, 3, 24]
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"transpose_input": [1, 24]
}
self.dynamic_shape.max_input_shape = {
"transpose_input": [9, 48]
}
self.dynamic_shape.opt_input_shape = {
"transpose_input": [1, 24]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if dynamic_shape == True:
return 1, 2
else:
if attrs[0]['axis'][0] == 0:
return 1, 2
else:
return 0, 3
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if program_config.ops[0].attrs['axis'] == [0, 1]:
return True
return False
self.add_skip_case(
teller1, SkipReasons.TRT_NOT_IMPLEMENTED,
"INPUT AXIS [0, 1] NOT SUPPORT: we need to add support in the future"
)
def test(self):
self.add_skip_trt_case()
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册