Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
04bcc13f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
04bcc13f
编写于
11月 19, 2020
作者:
W
Wojciech Uss
提交者:
GitHub
11月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add multi_gru op and tests (#28591)
* Add multi_gru op and tests * removed redundant disable_dygraph()
上级
fe2cf39f
变更
5
展开全部
隐藏空白更改
内联
并排
Showing
5 changed file
with
1189 addition
and
0 deletion
+1189
-0
paddle/fluid/operators/fused/mkldnn/multi_gru_mkldnn_op.cc
paddle/fluid/operators/fused/mkldnn/multi_gru_mkldnn_op.cc
+694
-0
paddle/fluid/operators/fused/multi_gru_op.cc
paddle/fluid/operators/fused/multi_gru_op.cc
+203
-0
paddle/fluid/operators/fused/multi_gru_op.h
paddle/fluid/operators/fused/multi_gru_op.h
+43
-0
python/paddle/fluid/tests/unittests/mkldnn/test_multi_gru_mkldnn_op.py
.../fluid/tests/unittests/mkldnn/test_multi_gru_mkldnn_op.py
+248
-0
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+1
-0
未找到文件。
paddle/fluid/operators/fused/mkldnn/multi_gru_mkldnn_op.cc
0 → 100644
浏览文件 @
04bcc13f
此差异已折叠。
点击以展开。
paddle/fluid/operators/fused/multi_gru_op.cc
0 → 100644
浏览文件 @
04bcc13f
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/multi_gru_op.h"
// #include "paddle/fluid/operators/fused/fusion_gru_op.h"
#include <cstring> // for memcpy
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
void
MultiGRUOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"multi_gru"
);
OP_INOUT_CHECK
(
ctx
->
HasInputs
(
"WeightX"
),
"Input"
,
"WeightX"
,
"multi_gru"
);
OP_INOUT_CHECK
(
ctx
->
HasInputs
(
"WeightH"
),
"Input"
,
"WeightH"
,
"multi_gru"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Hidden"
),
"Output"
,
"Hidden"
,
"multi_gru"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_mat_dims
=
(
x_dims
.
size
()
==
3
&&
x_dims
[
1
]
==
1
)
?
framework
::
flatten_to_2d
(
x_dims
,
1
)
:
x_dims
;
PADDLE_ENFORCE_EQ
(
x_mat_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The size of input X dims should be 2, "
"or 3 with second dimension equal to "
"1, but now Input X dim is:[%s] "
,
x_dims
));
auto
layers
=
ctx
->
Attrs
().
Get
<
int
>
(
"layers"
);
auto
wx_dims
=
ctx
->
GetInputsDim
(
"WeightX"
);
for
(
int
i
:
{
0
,
1
})
{
PADDLE_ENFORCE_EQ
(
wx_dims
[
i
][
0
],
x_mat_dims
[
1
],
platform
::
errors
::
InvalidArgument
(
"The first dimension of flattened WeightX #%d"
"should equal to last dimension of flattened input X, but "
"received fattened WeightX dimension is:%d, flattened X dimension "
"is:%d"
,
i
,
wx_dims
[
i
][
0
],
x_mat_dims
[
1
]));
}
auto
wh_dims
=
ctx
->
GetInputsDim
(
"WeightH"
);
for
(
int
i
=
0
;
i
<
2
*
layers
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
wx_dims
[
i
].
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The rank of WeightX #%d should be 2, but received "
"WeightX dim size is:%d, WeightX dim is:[%s] "
,
i
,
wx_dims
[
i
].
size
(),
wx_dims
[
i
]));
PADDLE_ENFORCE_EQ
(
wh_dims
[
i
].
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The rank of WeightH #%d should be 2, but received "
"WeightH dim size is:%d, WeightH dim is:[%s] "
,
i
,
wh_dims
[
i
].
size
(),
wh_dims
[
i
]));
int
frame_size
=
wh_dims
[
i
][
0
];
PADDLE_ENFORCE_EQ
(
wh_dims
[
i
][
1
],
3
*
frame_size
,
platform
::
errors
::
InvalidArgument
(
"The second dimension of WeightH #%d "
"should equal to 3 * frame_size, but received WeightH's "
"second dimension is: %d, frame size is:%d"
,
i
,
wh_dims
[
1
],
frame_size
));
PADDLE_ENFORCE_EQ
(
wx_dims
[
i
][
1
],
3
*
frame_size
,
platform
::
errors
::
InvalidArgument
(
"The second dimension of WeightX #%d "
"should equal to 3 * frame_size, but received WeightX's "
"second dimension is: %d, frame size is:%d"
,
i
,
wx_dims
[
i
][
1
],
frame_size
));
}
if
(
ctx
->
HasInputs
(
"Bias"
))
{
auto
b_dims
=
ctx
->
GetInputsDim
(
"Bias"
);
for
(
int
i
=
0
;
i
<
2
*
layers
;
++
i
)
{
int
frame_size
=
wh_dims
[
i
][
0
];
PADDLE_ENFORCE_EQ
(
b_dims
[
i
].
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The rank of Bias #%d should be 2, but received "
"Bias rank is:%d, Bias dim is:[%s]"
,
i
,
b_dims
[
i
].
size
(),
b_dims
[
i
]));
PADDLE_ENFORCE_EQ
(
b_dims
[
i
][
0
],
1
,
platform
::
errors
::
InvalidArgument
(
"The first dimension of Bias #%d should be 1, but "
"received Bias first dim is:%d, Bias dim is:[%s]"
,
i
,
b_dims
[
i
][
0
],
b_dims
[
i
]));
PADDLE_ENFORCE_EQ
(
b_dims
[
i
][
1
],
frame_size
*
3
,
platform
::
errors
::
InvalidArgument
(
"The shape of Bias #%d must be [1, frame_size * 3], but "
"received bias dim is:[%s], frame size is:%d"
,
i
,
b_dims
[
i
],
frame_size
));
}
}
int
last_frame_size
=
wh_dims
.
back
()[
0
];
framework
::
DDim
out_dims
({
x_mat_dims
[
0
],
2
*
last_frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
}
framework
::
OpKernelType
MultiGRUOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
framework
::
LibraryType
library
=
framework
::
LibraryType
::
kMKLDNN
;
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kMKLDNN
;
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
(),
layout
,
library
);
}
void
MultiGRUOpMaker
::
Make
()
{
AddInput
(
"X"
,
"(LoDTensor) the input is an LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x."
);
AddInput
(
"WeightX"
,
"(MultiTensor) The FC weight with shape (M x 3D),"
"where M is the dim size of x, D is the hidden size. "
)
.
AsDuplicable
();
AddInput
(
"WeightH"
,
"(MultiTensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
"This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
"Acutally they are D x 2D and D x D two part weights."
"{W_update, W_reset; W_state}"
"{D x (D + D); D x D}"
)
.
AsDuplicable
();
AddInput
(
"Bias"
,
"(MultiTensor, optional) (1 x 3D)."
"Almost same as GRUOp."
"Note: if have FC bias it should be added on this bias."
)
.
AsDuplicable
()
.
AsDispensable
();
AddInput
(
"Scale_weights"
,
"(MultiTensor, optional) Scale_weights to be used for int8 weights data."
"Only used with MKL-DNN INT8."
)
.
AsDuplicable
()
.
AsDispensable
();
AddOutput
(
"Hidden"
,
"(LoDTensor) (T x D) Same as GRUOp"
);
AddAttr
<
std
::
string
>
(
"activation"
,
"(string, default tanh) "
"The activation type used for output candidate {h}_t."
)
.
SetDefault
(
"tanh"
);
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"(string, default sigmoid) "
"The activation type used in update gate and reset gate."
)
.
SetDefault
(
"sigmoid"
);
AddAttr
<
int
>
(
"layers"
,
"(int, default: 1) "
"Number of stacked GRU layers."
)
.
SetDefault
(
1
);
AddAttr
<
bool
>
(
"origin_mode"
,
"bool"
"use origin mode in article https://arxiv.org/abs/1412.3555"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"mkldnn_data_type"
,
"(string, default
\"
float32
\"
). Data type of mkldnn kernel"
)
.
SetDefault
(
"float32"
)
.
InEnum
({
"float32"
,
"int8"
,
"bfloat16"
});
AddAttr
<
float
>
(
"Scale_data"
,
"Scales to be used for int8 input/output data."
"Only used with MKL-DNN INT8."
)
.
SetDefault
({
1.
f
});
AddAttr
<
float
>
(
"Shift_data"
,
"Shifts to be used for int8 input/output data."
"Only used with MKL-DNN INT8."
)
.
SetDefault
({
0.
f
});
AddAttr
<
bool
>
(
"force_fp32_output"
,
"(bool, default: false) Force INT8 kernel output FP32, only "
"used in MKL-DNN INT8"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU,
more details can refer to GRU op.
)DOC"
);
}
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
multi_gru
,
ops
::
MultiGRUOp
,
ops
::
MultiGRUOpMaker
);
paddle/fluid/operators/fused/multi_gru_op.h
0 → 100644
浏览文件 @
04bcc13f
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
LoDTensor
;
using
framework
::
Tensor
;
using
framework
::
ExecutionContext
;
class
MultiGRUOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
ExecutionContext
&
ctx
)
const
override
;
};
class
MultiGRUOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/mkldnn/test_multi_gru_mkldnn_op.py
0 → 100644
浏览文件 @
04bcc13f
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
paddle.fluid.tests.unittests.op_test
import
OpTest
from
paddle.fluid.tests.unittests.test_fusion_gru_op
import
fusion_gru
,
ACTIVATION
from
paddle.fluid.dygraph.base
import
disable_dygraph
def
multi_gru
(
x
,
# T x M
lod
,
# 1 x N
h0
,
# N x D
wx
,
# M x 3D
wh
,
# D x 3D
bias
,
# 1 x 3D
origin_mode
,
layers
):
act_state
=
ACTIVATION
[
'tanh'
]
act_gate
=
ACTIVATION
[
'sigmoid'
]
input
=
x
for
i
in
range
(
0
,
layers
*
2
,
2
):
_
,
_
,
_
,
gru1_out
=
fusion_gru
(
input
,
lod
,
h0
[
i
],
wx
[
i
],
wh
[
i
],
bias
[
i
],
False
,
origin_mode
,
act_state
,
act_gate
)
_
,
_
,
_
,
gru2_out
=
fusion_gru
(
input
,
lod
,
h0
[
i
+
1
],
wx
[
i
+
1
],
wh
[
i
+
1
],
bias
[
i
+
1
],
True
,
origin_mode
,
act_state
,
act_gate
)
input
=
np
.
concatenate
((
gru1_out
,
gru2_out
),
axis
=
1
)
return
input
class
TestMultiGruMkldnnOp
(
OpTest
):
def
set_confs
(
self
):
pass
def
set_dtype
(
self
):
pass
def
set_force_fp32_output
(
self
):
pass
def
setUp
(
self
):
self
.
op_type
=
"multi_gru"
self
.
lod
=
[[
2
,
4
,
3
]]
self
.
ICs
=
[
3
]
self
.
OCs
=
[
5
]
self
.
with_bias
=
True
self
.
layers
=
1
self
.
origin_mode
=
False
self
.
_cpu_only
=
True
self
.
error_margin
=
1e-5
self
.
set_confs
()
self
.
dtype
=
"float32"
self
.
set_dtype
()
self
.
force_fp32_output
=
False
self
.
set_force_fp32_output
()
is_int8
=
self
.
dtype
==
'int8'
scale_data
=
63
shift_data
=
64
T
=
sum
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
self
.
inputs
=
{}
if
is_int8
:
x_f32
=
np
.
random
.
rand
(
T
,
self
.
ICs
[
0
]).
astype
(
'float32'
)
*
2
-
1
x_u8
=
np
.
rint
(
x_f32
*
scale_data
+
shift_data
).
astype
(
np
.
uint8
)
self
.
inputs
[
'X'
]
=
(
x_u8
,
self
.
lod
)
else
:
x_f32
=
np
.
random
.
rand
(
T
,
self
.
ICs
[
0
]).
astype
(
'float32'
)
self
.
inputs
[
'X'
]
=
(
x_f32
,
self
.
lod
)
wx
=
[]
wh
=
[]
bias
=
[]
h0
=
[]
for
layer
in
range
(
self
.
layers
):
IC
=
self
.
ICs
[
layer
]
OC
=
self
.
OCs
[
layer
]
for
j
in
range
(
2
):
wx
.
append
(
np
.
random
.
rand
(
IC
,
3
*
OC
).
astype
(
'float32'
))
wh
.
append
(
np
.
random
.
rand
(
OC
,
3
*
OC
).
astype
(
'float32'
))
bias
.
append
(
np
.
random
.
rand
(
1
,
3
*
OC
).
astype
(
'float32'
)
if
self
.
with_bias
else
np
.
zeros
(
(
1
,
3
*
OC
),
dtype
=
'float32'
))
h0
.
append
(
np
.
zeros
((
N
,
OC
),
dtype
=
'float32'
))
self
.
inputs
[
'WeightX'
]
=
[(
'wx'
+
str
(
i
),
wx
[
i
])
for
i
in
range
(
self
.
layers
*
2
)]
self
.
inputs
[
'WeightH'
]
=
[(
'wh'
+
str
(
i
),
wh
[
i
])
for
i
in
range
(
self
.
layers
*
2
)]
if
self
.
with_bias
:
self
.
inputs
[
'Bias'
]
=
[(
'b'
+
str
(
i
),
bias
[
i
])
for
i
in
range
(
self
.
layers
*
2
)]
if
is_int8
:
s8_max
=
127.0
scale_weights
=
[]
for
layer
in
range
(
self
.
layers
):
OC
=
self
.
OCs
[
layer
]
for
j
in
range
(
2
):
scale_ur
=
s8_max
/
np
.
max
(
np
.
abs
(
np
.
concatenate
(
[
wx
[
2
*
layer
+
j
][:,
:
2
*
OC
],
wh
[
2
*
layer
+
j
]
.
flatten
()[:
2
*
OC
*
OC
].
reshape
(
OC
,
2
*
OC
)
],
axis
=
0
)),
axis
=
0
)
scale_o
=
s8_max
/
np
.
max
(
np
.
abs
(
np
.
concatenate
(
[
wx
[
2
*
layer
+
j
][:,
2
*
OC
:],
wh
[
2
*
layer
+
j
]
.
flatten
()[
2
*
OC
*
OC
:].
reshape
(
OC
,
OC
)
],
axis
=
0
)),
axis
=
0
)
scale_weights
.
append
(
np
.
concatenate
([
scale_ur
,
scale_o
]).
astype
(
'float32'
))
self
.
inputs
[
'Scale_weights'
]
=
[(
'w_scale'
+
str
(
i
),
scale_weights
[
i
])
for
i
in
range
(
self
.
layers
*
2
)]
self
.
error_margin
=
1e-1
if
self
.
force_fp32_output
else
1
hidden_f32
=
multi_gru
(
x_f32
,
self
.
lod
,
h0
,
wx
,
wh
,
bias
,
self
.
origin_mode
,
self
.
layers
)
if
self
.
dtype
==
'float32'
or
self
.
force_fp32_output
:
self
.
outputs
=
{
'Hidden'
:
(
hidden_f32
,
self
.
lod
)}
else
:
hidden_u8
=
np
.
rint
(
hidden_f32
*
scale_data
+
shift_data
).
astype
(
np
.
uint8
)
self
.
outputs
=
{
'Hidden'
:
(
hidden_u8
,
self
.
lod
)}
self
.
attrs
=
{
'activation'
:
'tanh'
,
'gate_activation'
:
'sigmoid'
,
'layers'
:
self
.
layers
,
'origin_mode'
:
self
.
origin_mode
,
'use_mkldnn'
:
True
,
}
if
is_int8
:
self
.
attrs
[
'force_fp32_output'
]
=
self
.
force_fp32_output
self
.
attrs
[
'Scale_data'
]
=
scale_data
self
.
attrs
[
'Shift_data'
]
=
shift_data
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
,
atol
=
self
.
error_margin
)
class
TestMultiGruMkldnnOpNoBias
(
TestMultiGruMkldnnOp
):
def
set_confs
(
self
):
self
.
with_bias
=
False
class
TestMultiGruMkldnnOpLayers2
(
TestMultiGruMkldnnOp
):
def
set_confs
(
self
):
self
.
layers
=
2
self
.
ICs
=
[
2
,
6
]
self
.
OCs
=
[
3
,
8
]
class
TestMultiGruMkldnnOpLayers3
(
TestMultiGruMkldnnOp
):
def
set_confs
(
self
):
self
.
layers
=
3
self
.
ICs
=
[
2
,
6
,
12
]
self
.
OCs
=
[
3
,
6
,
14
]
class
TestMultiGruMkldnnOpOriginMode
(
TestMultiGruMkldnnOp
):
def
set_confs
(
self
):
self
.
origin_mode
=
True
class
TestMultiGruMkldnnInt8Op
(
TestMultiGruMkldnnOp
):
def
set_dtype
(
self
):
self
.
dtype
=
'int8'
class
TestMultiGruMkldnnInt8OpForceFP32Output
(
TestMultiGruMkldnnInt8Op
):
def
set_force_fp32_output
(
self
):
self
.
force_fp32_output
=
True
class
TestMultiGruMkldnnInt8OpNoBias
(
TestMultiGruMkldnnOpNoBias
):
def
set_dtype
(
self
):
self
.
dtype
=
'int8'
class
TestMultiGruMkldnnInt8OpNoBiasForceFP32Output
(
TestMultiGruMkldnnInt8OpNoBias
):
def
set_force_fp32_output
(
self
):
self
.
force_fp32_output
=
True
class
TestMultiGruMkldnnInt8OpLayers2
(
TestMultiGruMkldnnOpLayers2
):
def
set_dtype
(
self
):
self
.
dtype
=
'int8'
class
TestMultiGruMkldnnInt8OpLayers2ForceFP32Output
(
TestMultiGruMkldnnInt8OpLayers2
):
def
set_force_fp32_output
(
self
):
self
.
force_fp32_output
=
True
class
TestMultiGruMkldnnInt8OpLayers3
(
TestMultiGruMkldnnOpLayers3
):
def
set_dtype
(
self
):
self
.
dtype
=
'int8'
class
TestMultiGruMkldnnInt8OpLayers3ForceFP32Output
(
TestMultiGruMkldnnInt8OpLayers3
):
def
set_force_fp32_output
(
self
):
self
.
force_fp32_output
=
True
class
TestMultiGruMkldnnInt8OpOriginMode
(
TestMultiGruMkldnnOpOriginMode
):
def
set_dtype
(
self
):
self
.
dtype
=
'int8'
class
TestMultiGruMkldnnInt8OpOriginModeForceFP32Output
(
TestMultiGruMkldnnInt8OpOriginMode
):
def
set_force_fp32_output
(
self
):
self
.
force_fp32_output
=
True
if
__name__
==
"__main__"
:
unittest
.
main
()
tools/static_mode_white_list.py
浏览文件 @
04bcc13f
...
@@ -598,6 +598,7 @@ STATIC_MODE_TESTING_LIST = [
...
@@ -598,6 +598,7 @@ STATIC_MODE_TESTING_LIST = [
'test_lrn_mkldnn_op'
,
'test_lrn_mkldnn_op'
,
'test_matmul_mkldnn_op'
,
'test_matmul_mkldnn_op'
,
'test_mul_int8_mkldnn_op'
,
'test_mul_int8_mkldnn_op'
,
'test_multi_gru_mkldnn_op'
,
'test_pool2d_int8_mkldnn_op'
,
'test_pool2d_int8_mkldnn_op'
,
'test_pool2d_mkldnn_op'
,
'test_pool2d_mkldnn_op'
,
'test_quantize_mkldnn_op'
,
'test_quantize_mkldnn_op'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录