Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
03dda317
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
03dda317
编写于
11月 26, 2019
作者:
B
bingyanghuang
提交者:
Tao Luo
11月 26, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] Refactor mkldnn eletwise_mul and error message for NHWC in mkldnn (#21361)
上级
93c7f058
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
290 addition
and
323 deletion
+290
-323
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+19
-8
paddle/fluid/operators/conv_transpose_op.cc
paddle/fluid/operators/conv_transpose_op.cc
+5
-0
paddle/fluid/operators/elementwise/CMakeLists.txt
paddle/fluid/operators/elementwise/CMakeLists.txt
+1
-0
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
+1
-1
paddle/fluid/operators/elementwise/elementwise_mul_op.h
paddle/fluid/operators/elementwise/elementwise_mul_op.h
+45
-0
paddle/fluid/operators/elementwise/elementwise_op.h
paddle/fluid/operators/elementwise/elementwise_op.h
+2
-13
paddle/fluid/operators/elementwise/mkldnn/elementwise_mul_mkldnn_op.cc
...operators/elementwise/mkldnn/elementwise_mul_mkldnn_op.cc
+38
-125
paddle/fluid/operators/elementwise/test_elementwise_mul_op_dim.cc
...luid/operators/elementwise/test_elementwise_mul_op_dim.cc
+115
-0
paddle/fluid/operators/lrn_op.cc
paddle/fluid/operators/lrn_op.cc
+12
-0
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+12
-0
python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_mul_mkldnn_op.py
.../tests/unittests/mkldnn/test_elementwise_mul_mkldnn_op.py
+3
-176
python/paddle/fluid/tests/unittests/mkldnn/test_lrn_mkldnn_op.py
...paddle/fluid/tests/unittests/mkldnn/test_lrn_mkldnn_op.py
+16
-0
python/paddle/fluid/tests/unittests/mkldnn/test_pool2d_mkldnn_op.py
...dle/fluid/tests/unittests/mkldnn/test_pool2d_mkldnn_op.py
+21
-0
未找到文件。
paddle/fluid/operators/conv_op.cc
浏览文件 @
03dda317
...
...
@@ -148,6 +148,15 @@ framework::OpKernelType ConvOp::GetExpectedKernelType(
#ifdef PADDLE_WITH_MKLDNN
if
(
library
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
// TODO(jczaja): Add support for NHWC
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
PADDLE_ENFORCE_NE
(
data_format
,
"NHWC"
,
platform
::
errors
::
Unimplemented
(
"Conv MKLDNN does not support NHWC data format yet"
));
PADDLE_ENFORCE_NE
(
data_format
,
"NDHWC"
,
platform
::
errors
::
Unimplemented
(
"Conv MKLDNN does not support NDHWC data format yet"
));
library
=
framework
::
LibraryType
::
kMKLDNN
;
layout
=
framework
::
DataLayout
::
kMKLDNN
;
customized_type_value
=
...
...
@@ -521,6 +530,16 @@ framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
// TODO(jczaja): Add support for NHWC
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
PADDLE_ENFORCE_NE
(
data_format
,
"NHWC"
,
platform
::
errors
::
Unimplemented
(
"Conv MKLDNN grad does not support NHWC data format yet"
));
PADDLE_ENFORCE_NE
(
data_format
,
"NDHWC"
,
platform
::
errors
::
Unimplemented
(
"Conv MKLDNN Grad does not support NDHWC data format yet"
));
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
customized_type_value
=
kConvMKLDNNFP32
;
...
...
@@ -695,14 +714,6 @@ framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
if
(
platform
::
CanCUDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
#endif
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
customized_type_value
=
kConvMKLDNNFP32
;
}
#endif
auto
type
=
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"Input"
),
ctx
.
GetPlace
(),
...
...
paddle/fluid/operators/conv_transpose_op.cc
浏览文件 @
03dda317
...
...
@@ -127,6 +127,11 @@ framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
// TODO(jczaja): Add support for NHWC
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
PADDLE_ENFORCE_NE
(
data_format
,
"NHWC"
,
"Conv Transpose MKLDNN does not support NHWC data format yet"
);
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
}
...
...
paddle/fluid/operators/elementwise/CMakeLists.txt
浏览文件 @
03dda317
...
...
@@ -4,3 +4,4 @@ register_operators()
cc_test
(
test_elementwise_add_op_inplace SRCS test_elementwise_add_op_inplace.cc DEPS op_registry elementwise_add_op scope device_context enforce executor
)
cc_test
(
test_elementwise_div_grad_grad SRCS test_elementwise_div_grad_grad.cc DEPS op_registry elementwise_div_op scope device_context enforce executor
)
cc_test
(
test_elementwise_add_grad_grad SRCS test_elementwise_add_grad_grad.cc DEPS op_registry elementwise_add_op scope device_context enforce executor
)
cc_test
(
test_elementwise_mul_op_correct_dims SRCS test_elementwise_mul_op_dim.cc DEPS op_registry elementwise_mul_op scope device_context enforce executor
)
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
浏览文件 @
03dda317
...
...
@@ -116,7 +116,7 @@ class ElementwiseMulDoubleGradDescMaker
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
elementwise_mul
,
ops
::
ElementwiseOp
,
REGISTER_OPERATOR
(
elementwise_mul
,
ops
::
Elementwise
Mul
Op
,
ops
::
ElementwiseMulOpMaker
,
ops
::
ElementwiseOpInferVarType
,
ops
::
ElementwiseMulOpGradDescMaker
);
REGISTER_OPERATOR
(
elementwise_mul_grad
,
ops
::
ElementwiseOpGrad
,
...
...
paddle/fluid/operators/elementwise/elementwise_mul_op.h
浏览文件 @
03dda317
...
...
@@ -13,14 +13,59 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
class
ElementwiseMulOp
:
public
ElementwiseOp
{
public:
using
Tensor
=
framework
::
Tensor
;
using
ElementwiseOp
::
ElementwiseOp
;
#ifdef PADDLE_WITH_MKLDNN
static
bool
AreDimsAndFormatCorrect
(
const
framework
::
ExecutionContext
&
ctx
,
int
simd_width
,
mkldnn
::
memory
::
format
x_format
)
{
using
Tensor
=
framework
::
Tensor
;
using
paddle
::
framework
::
vectorize
;
using
mkldnn
::
memory
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
x_dims
=
vectorize
(
x
->
dims
());
const
bool
are_dims_divisable
=
!
(
x_dims
[
1
]
%
simd_width
);
const
bool
is_x_format_correct
=
x
->
format
()
==
x_format
;
const
bool
is_y_format_correct
=
vectorize
(
y
->
dims
()).
size
()
==
2
;
return
are_dims_divisable
&&
is_x_format_correct
&&
is_y_format_correct
;
}
#endif
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
#ifdef PADDLE_WITH_MKLDNN
using
mkldnn
::
memory
;
if
(
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
bool
can_use_avx512_kernel
=
platform
::
MayIUse
(
platform
::
avx512f
)
&&
AreDimsAndFormatCorrect
(
ctx
,
16
,
memory
::
format
::
nChw16c
);
if
(
can_use_avx512_kernel
)
{
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kMKLDNN
,
framework
::
LibraryType
::
kMKLDNN
);
}
}
#endif
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
template
<
typename
DeviceContext
,
typename
T
>
void
default_elementwise_mul
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
...
...
paddle/fluid/operators/elementwise/elementwise_op.h
浏览文件 @
03dda317
...
...
@@ -120,21 +120,10 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
.
EqualGreaterThan
(
-
1
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false). Used by MKLDNN."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"x_data_format"
,
"(string, default NCHW) Only used in mkldnn"
"An optional string from:
\"
NHWC
\"
,
\"
NCHW
\"
,
\"
NCHW16C
\"
,
\"
NCHW8C
\"
. "
"Defaults to
\"\"
. Specify the data format of the output data, "
"the input will be transformed automatically. "
)
AddAttr
<
std
::
string
>
(
"x_data_format"
,
"This parameter is no longer used."
)
.
SetDefault
(
""
);
AddAttr
<
std
::
string
>
(
"y_data_format"
,
"(string, default
\"\"
) Only used in mkldnn"
"An optional string from:
\"
NHWC
\"
,
\"
NCHW
\"
,
\"
NCHW16C
\"
,
\"
NCHW8C
\"
. "
"Defaults to
\"\"
. Specify the data format of the output data, "
"the input will be transformed automatically. "
)
AddAttr
<
std
::
string
>
(
"y_data_format"
,
"This parameter is no longer used."
)
.
SetDefault
(
""
);
AddOpComment
();
}
...
...
paddle/fluid/operators/elementwise/mkldnn/elementwise_mul_mkldnn_op.cc
浏览文件 @
03dda317
...
...
@@ -32,38 +32,28 @@ using framework::DataLayout;
using
mkldnn
::
memory
;
using
platform
::
StringToMKLDNNFormat
;
static
void
UpdateDataFormat
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
Tensor
*
tensor
,
const
char
*
attribute
)
{
if
(
ctx
.
op
().
HasAttr
(
attribute
))
{
auto
format_as_string
=
ctx
.
Attr
<
std
::
string
>
(
attribute
);
auto
format
=
StringToMKLDNNFormat
(
&
format_as_string
);
if
(
format
!=
MKLDNNMemoryFormat
::
any
)
{
tensor
->
set_format
(
format
);
template
<
typename
T
>
static
void
ComputeBroadcastedMultiply
(
const
T
*
x_data
,
const
T
*
y_data
,
T
*
z_data
,
int64_t
n
,
int64_t
c
,
int64_t
h
,
int64_t
w
,
int
simd_width
,
void
(
*
multiply
)(
const
T
*
,
const
T
*
,
T
*
,
int
,
int
))
{
const
int64_t
C
=
c
/
simd_width
;
#pragma omp parallel for collapse(2)
for
(
int
ni
=
0
;
ni
<
n
;
ni
++
)
{
for
(
int
ci
=
0
;
ci
<
C
;
ci
++
)
{
auto
ptr_x
=
x_data
+
ni
*
C
*
h
*
w
*
simd_width
+
ci
*
h
*
w
*
simd_width
;
auto
ptr_y
=
y_data
+
ni
*
C
*
simd_width
+
ci
*
simd_width
;
auto
ptr_z
=
z_data
+
ni
*
C
*
h
*
w
*
simd_width
+
ci
*
h
*
w
*
simd_width
;
multiply
(
ptr_x
,
ptr_y
,
ptr_z
,
h
,
w
);
}
}
}
template
<
typename
T
>
static
void
ReorderInput
(
framework
::
Tensor
*
tensor
,
const
platform
::
Place
&
place
,
const
mkldnn
::
engine
&
engine
,
bool
isFourDim
)
{
using
platform
::
to_void_cast
;
auto
dims
=
paddle
::
framework
::
vectorize
<
int
>
(
tensor
->
dims
());
framework
::
Tensor
out_tensor
;
out_tensor
.
Resize
(
tensor
->
dims
());
out_tensor
.
set_format
(
isFourDim
?
MKLDNNMemoryFormat
::
nchw
:
MKLDNNMemoryFormat
::
nc
);
out_tensor
.
set_layout
(
tensor
->
layout
());
mkldnn
::
memory
input_memory
=
{
{{
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
tensor
->
format
()},
engine
},
to_void_cast
<
T
>
(
tensor
->
data
<
T
>
())};
mkldnn
::
memory
output_memory
=
{
{{
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out_tensor
.
format
()},
engine
},
to_void_cast
<
T
>
(
out_tensor
.
mutable_data
<
T
>
(
place
))};
platform
::
Reorder
(
input_memory
,
output_memory
);
tensor
->
ShareDataWith
(
out_tensor
);
}
template
<
typename
T
>
class
ElementwiseMulMKLDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -82,103 +72,26 @@ class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
auto
y_dims_untrimmed
=
y
->
dims
();
auto
x_int_dims
=
paddle
::
framework
::
vectorize
<
int
>
(
x_dims
);
UpdateDataFormat
(
ctx
,
const_cast
<
Tensor
*>
(
x
),
"x_data_format"
);
UpdateDataFormat
(
ctx
,
const_cast
<
Tensor
*>
(
y
),
"y_data_format"
);
const
bool
is_avx512_enabled
=
platform
::
MayIUse
(
platform
::
avx512f
);
const
bool
are_dims_divisable
=
!
(
x_int_dims
[
1
]
%
16
);
const
bool
is_x_format_correct
=
x
->
format
()
==
MKLDNNMemoryFormat
::
nChw16c
;
const
bool
is_y_format_correct
=
y
->
format
()
==
MKLDNNMemoryFormat
::
nc
;
if
(
is_x_format_correct
&&
is_y_format_correct
&&
are_dims_divisable
&&
is_avx512_enabled
)
{
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims_untrimmed
,
axis
,
&
pre
,
&
n
,
&
post
);
if
(
post
==
1
)
{
PADDLE_THROW
(
"Not implemented when post is 1"
);
}
else
{
// Just check whether it works for RE-Resnext.
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
4
,
"X should have 4 dimensions"
);
int
n
=
x_dims
[
0
];
int
c
=
x_dims
[
1
];
int
h
=
x_dims
[
2
];
int
w
=
x_dims
[
3
];
PADDLE_ENFORCE
(
y_dims_untrimmed
[
0
]
==
n
&&
y_dims_untrimmed
[
1
]
==
c
,
"Y should be in nc format"
);
constexpr
int
simd_width
=
16
;
int
C
=
c
/
simd_width
;
auto
multiply
=
jit
::
KernelFuncs
<
jit
::
NCHW16CMulNCTuple
<
T
>
,
platform
::
CPUPlace
>::
Cache
()
.
At
(
0
);
#pragma omp parallel for collapse(2)
for
(
int
ni
=
0
;
ni
<
n
;
ni
++
)
{
for
(
int
ci
=
0
;
ci
<
C
;
ci
++
)
{
auto
ptr_x
=
x_data
+
ni
*
C
*
h
*
w
*
simd_width
+
ci
*
h
*
w
*
simd_width
;
auto
ptr_y
=
y_data
+
ni
*
C
*
simd_width
+
ci
*
simd_width
;
auto
ptr_z
=
z_data
+
ni
*
C
*
h
*
w
*
simd_width
+
ci
*
h
*
w
*
simd_width
;
multiply
(
ptr_x
,
ptr_y
,
ptr_z
,
h
,
w
);
}
}
}
z
->
set_layout
(
DataLayout
::
kMKLDNN
);
z
->
set_format
(
x
->
format
());
}
else
{
// Fallback to naive version:
const
bool
are_inputs_in_same_format
=
x
->
format
()
==
y
->
format
();
const
bool
is_x_nchw
=
x
->
format
()
==
MKLDNNMemoryFormat
::
nchw
;
const
bool
is_x_nc
=
x
->
format
()
==
MKLDNNMemoryFormat
::
nc
;
const
bool
is_x_x
=
x
->
format
()
==
MKLDNNMemoryFormat
::
x
;
const
bool
is_y_nchw
=
y
->
format
()
==
MKLDNNMemoryFormat
::
nchw
;
const
bool
is_y_nc
=
y
->
format
()
==
MKLDNNMemoryFormat
::
nc
;
const
bool
is_y_x
=
y
->
format
()
==
MKLDNNMemoryFormat
::
x
;
if
(
!
are_inputs_in_same_format
)
{
using
platform
::
MKLDNNDeviceContext
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
if
(
!
(
is_x_nchw
||
is_x_nc
||
is_x_x
))
ReorderInput
<
T
>
(
const_cast
<
Tensor
*>
(
x
),
ctx
.
GetPlace
(),
mkldnn_engine
,
x
->
dims
().
size
()
==
4
);
if
(
!
(
is_y_nchw
||
is_y_nc
||
is_y_x
))
ReorderInput
<
T
>
(
const_cast
<
Tensor
*>
(
y
),
ctx
.
GetPlace
(),
mkldnn_engine
,
y
->
dims
().
size
()
==
4
);
}
auto
mul_func
=
[](
T
a
,
T
b
)
->
T
{
return
a
*
b
;
};
TransformFunctor
<
decltype
(
mul_func
),
T
,
paddle
::
platform
::
CPUDeviceContext
,
T
>
functor
(
x
,
y
,
z
,
ctx
.
template
device_context
<
paddle
::
platform
::
CPUDeviceContext
>(),
mul_func
);
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims_untrimmed
.
size
()
:
axis
);
PADDLE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
auto
y_dims
=
trim_trailing_singular_dims
(
y_dims_untrimmed
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
);
if
(
post
==
1
)
{
functor
.
RunRowWise
(
n
,
pre
);
}
else
{
functor
.
RunMidWise
(
n
,
pre
,
post
);
}
z
->
set_layout
(
DataLayout
::
kMKLDNN
);
z
->
set_format
(
x
->
format
());
}
int
pre
,
num
,
post
,
is_run_common_broadcast
;
get_mid_dims
(
x_dims
,
y_dims_untrimmed
,
axis
,
&
pre
,
&
num
,
&
post
,
&
is_run_common_broadcast
);
if
(
post
==
1
)
PADDLE_THROW
(
"Not implemented when post is 1"
);
const
int64_t
n
=
x_dims
[
0
];
const
int64_t
c
=
x_dims
[
1
];
const
int64_t
h
=
x_dims
[
2
];
const
int64_t
w
=
x_dims
[
3
];
const
int
simd_width
=
16
;
auto
multiply
=
jit
::
KernelFuncs
<
jit
::
NCHW16CMulNCTuple
<
T
>
,
platform
::
CPUPlace
>::
Cache
()
.
At
(
0
);
ComputeBroadcastedMultiply
(
x_data
,
y_data
,
z_data
,
n
,
c
,
h
,
w
,
simd_width
,
multiply
);
z
->
set_layout
(
DataLayout
::
kMKLDNN
);
z
->
set_format
(
x
->
format
());
}
};
}
// namespace operators
...
...
paddle/fluid/operators/elementwise/test_elementwise_mul_op_dim.cc
0 → 100644
浏览文件 @
03dda317
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "gtest/gtest.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
USE_OP
(
elementwise_mul
);
namespace
paddle
{
namespace
operators
{
#ifdef PADDLE_WITH_MKLDNN
using
framework
::
Scope
;
using
framework
::
LoDTensor
;
using
framework
::
OpRegistry
;
using
framework
::
OperatorBase
;
using
framework
::
RuntimeContext
;
using
framework
::
ExecutionContext
;
struct
TestData
{
int64_t
channel_num
;
MKLDNNMemoryFormat
format
;
framework
::
DDim
y_dims
;
bool
supposed_to_fail
;
};
void
MainTest
(
const
TestData
&
test_data
)
{
auto
place
=
platform
::
CPUPlace
();
Scope
scope
;
auto
*
x
=
scope
.
Var
(
"x"
)
->
GetMutable
<
LoDTensor
>
();
auto
*
y
=
scope
.
Var
(
"y"
)
->
GetMutable
<
LoDTensor
>
();
scope
.
Var
(
"out"
)
->
GetMutable
<
LoDTensor
>
();
x
->
Resize
({
1
,
test_data
.
channel_num
,
3
,
3
});
y
->
Resize
(
test_data
.
y_dims
);
x
->
set_format
(
test_data
.
format
);
y
->
set_format
(
MKLDNNMemoryFormat
::
nc
);
std
::
unique_ptr
<
OperatorBase
>
op
=
OpRegistry
::
CreateOp
(
"elementwise_mul"
,
{{
"X"
,
{
"x"
}},
{
"Y"
,
{
"y"
}}},
{{
"Out"
,
{
"out"
}}},
{});
auto
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
dynamic_cast
<
platform
::
MKLDNNDeviceContext
*>
(
pool
.
Get
(
place
));
RuntimeContext
runtime_ctx
=
RuntimeContext
(
op
->
Inputs
(),
op
->
Outputs
(),
scope
);
ExecutionContext
ctx
=
ExecutionContext
(
*
op
,
scope
,
*
dev_ctx
,
runtime_ctx
,
nullptr
);
bool
result
=
ElementwiseMulOp
::
AreDimsAndFormatCorrect
(
ctx
,
16
,
MKLDNNMemoryFormat
::
nChw16c
);
if
(
test_data
.
supposed_to_fail
)
ASSERT_FALSE
(
result
);
else
ASSERT_TRUE
(
result
);
}
// Checks if AreDimsAndFormatCorrect returns true when supplied with expected
// data
TEST
(
ElementwiseMulOpTester
,
correct_dims
)
{
TestData
test_data
;
test_data
.
channel_num
=
16
;
test_data
.
format
=
MKLDNNMemoryFormat
::
nChw16c
;
test_data
.
y_dims
=
{
1
,
test_data
.
channel_num
};
test_data
.
supposed_to_fail
=
false
;
MainTest
(
test_data
);
}
// Checks if AreDimsAndFormatCorrect fails when channel_num is not divisable by
// 16
TEST
(
ElementwiseMulOpTester
,
incorrect_channel_num
)
{
TestData
test_data
;
test_data
.
channel_num
=
17
;
test_data
.
format
=
MKLDNNMemoryFormat
::
nChw16c
;
test_data
.
y_dims
=
{
1
,
test_data
.
channel_num
};
test_data
.
supposed_to_fail
=
true
;
MainTest
(
test_data
);
}
// Checks if AreDimsAndFormatCorrect fails when x format is different from
// nchw16c
TEST
(
ElementwiseMulOpTester
,
incorrect_format
)
{
TestData
test_data
;
test_data
.
channel_num
=
16
;
test_data
.
format
=
MKLDNNMemoryFormat
::
nchw
;
test_data
.
y_dims
=
{
1
,
test_data
.
channel_num
};
test_data
.
supposed_to_fail
=
true
;
MainTest
(
test_data
);
}
// Checks if AreDimsAndFormatCorrect fails when y input is not 2-dimensional
TEST
(
ElementwiseMulOpTester
,
incorrect_y_dims
)
{
TestData
test_data
;
test_data
.
channel_num
=
16
;
test_data
.
format
=
MKLDNNMemoryFormat
::
nChw16c
;
test_data
.
y_dims
=
{
1
,
test_data
.
channel_num
,
1
};
test_data
.
supposed_to_fail
=
true
;
MainTest
(
test_data
);
}
#endif
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/lrn_op.cc
浏览文件 @
03dda317
...
...
@@ -193,6 +193,12 @@ class LRNOp : public framework::OperatorWithKernel {
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
// TODO(jczaja): Add support for NHWC
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
PADDLE_ENFORCE_NE
(
data_format
,
"NHWC"
,
platform
::
errors
::
Unimplemented
(
"LRN MKLDNN does not support NHWC data format yet"
));
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
}
...
...
@@ -311,6 +317,12 @@ class LRNOpGrad : public framework::OperatorWithKernel {
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
// TODO(jczaja): Add support for NHWC
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
PADDLE_ENFORCE_NE
(
data_format
,
"NHWC"
,
platform
::
errors
::
Unimplemented
(
"LRN MKLDNN grad does not support NHWC data format yet"
));
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
}
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
03dda317
...
...
@@ -129,6 +129,12 @@ framework::OpKernelType PoolOp::GetExpectedKernelType(
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
// TODO(jczaja): Add support for NHWC
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
PADDLE_ENFORCE_NE
(
data_format
,
"NHWC"
,
platform
::
errors
::
Unimplemented
(
"Pool MKLDNN grad does not support NHWC data format yet"
));
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
}
...
...
@@ -160,6 +166,12 @@ framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
// TODO(jczaja): Add support for NHWC
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
PADDLE_ENFORCE_NE
(
data_format
,
"NHWC"
,
platform
::
errors
::
Unimplemented
(
"Pool MKLDNN grad does not support NHWC data format yet"
));
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
}
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_mul_mkldnn_op.py
浏览文件 @
03dda317
...
...
@@ -40,7 +40,7 @@ class TestElementwiseMulMKLDNNOp_Integrated_With_Convs(ElementwiseMulOp):
self
.
filter_size2
=
[
1
,
16
,
2
,
2
]
self
.
dilations
=
[
1
,
1
]
self
.
use_cudnn
=
False
self
.
data_format
=
"
NCHW
"
self
.
data_format
=
"
ANYLAYOUT
"
self
.
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
self
.
filter
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
self
.
filter2
=
np
.
random
.
random
(
self
.
filter_size2
).
astype
(
self
.
dtype
)
...
...
@@ -97,7 +97,8 @@ class TestElementwiseMulMKLDNNOp_Integrated_With_Convs(ElementwiseMulOp):
'groups'
:
self
.
groups
,
'dilations'
:
self
.
dilations
,
'use_cudnn'
:
self
.
use_cudnn
,
'use_mkldnn'
:
self
.
use_mkldnn
'use_mkldnn'
:
self
.
use_mkldnn
,
'data_format'
:
self
.
data_format
})
elementwise_mul_op
=
block
.
append_op
(
type
=
"elementwise_mul"
,
...
...
@@ -152,179 +153,5 @@ class TestElementwiseMulMKLDNNOp_Integrated_With_Convs(ElementwiseMulOp):
pass
class
TestElementwiseMulMKLDNNOp_FallbackNCHW
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
1
,
16
,
2
,
2
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
1
,
16
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
*
self
.
y
.
reshape
(
1
,
16
,
1
,
1
)
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
def
init_axis
(
self
):
self
.
axis
=
0
def
test_check_grad_normal
(
self
):
pass
def
test_check_grad_ingore_x
(
self
):
pass
def
test_check_grad_ingore_y
(
self
):
pass
class
TestElementwiseMulMKLDNNOp_FallbackNCHW16C
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
rand
(
1
,
16
,
2
,
2
).
astype
(
self
.
dtype
)
self
.
x
=
x
.
transpose
(
0
,
2
,
3
,
1
).
reshape
(
1
,
16
,
2
,
2
)
y
=
np
.
random
.
rand
(
1
,
16
,
2
,
2
).
astype
(
self
.
dtype
)
self
.
y
=
y
.
transpose
(
0
,
2
,
3
,
1
).
reshape
(
1
,
16
,
2
,
2
)
self
.
out
=
x
*
y
def
setUp
(
self
):
super
(
TestElementwiseMulMKLDNNOp_FallbackNCHW16C
,
self
).
setUp
()
self
.
attrs
[
"x_data_format"
]
=
"nchw16c"
self
.
attrs
[
"y_data_format"
]
=
"nchw16c"
self
.
_cpu_only
=
True
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
def
init_axis
(
self
):
self
.
axis
=
0
def
test_check_grad_normal
(
self
):
pass
def
test_check_grad_ingore_x
(
self
):
pass
def
test_check_grad_ingore_y
(
self
):
pass
class
TestElementwiseMulMKLDNNOp_FallbackNoReorders
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
rand
(
1
,
16
,
2
,
2
).
astype
(
self
.
dtype
)
self
.
x
=
x
.
transpose
(
0
,
2
,
3
,
1
).
reshape
(
1
,
16
,
2
,
2
)
y
=
np
.
random
.
rand
(
1
,
16
,
2
,
2
).
astype
(
self
.
dtype
)
self
.
y
=
y
.
transpose
(
0
,
2
,
3
,
1
).
reshape
(
1
,
16
,
2
,
2
)
self
.
out
=
x
*
y
def
setUp
(
self
):
super
(
TestElementwiseMulMKLDNNOp_FallbackNoReorders
,
self
).
setUp
()
self
.
attrs
[
"x_data_format"
]
=
"nchw16c"
self
.
attrs
[
"y_data_format"
]
=
"nchw16c"
self
.
_cpu_only
=
True
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
def
init_axis
(
self
):
self
.
axis
=
0
def
test_check_grad_normal
(
self
):
pass
def
test_check_grad_ingore_x
(
self
):
pass
def
test_check_grad_ingore_y
(
self
):
pass
class
TestElementwiseMulMKLDNNOp_FallbackWithReorder1
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
1
,
16
,
2
,
2
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
rand
(
1
,
16
,
2
,
2
).
astype
(
self
.
dtype
)
self
.
y
=
y
.
transpose
(
0
,
2
,
3
,
1
).
reshape
(
1
,
16
,
2
,
2
)
self
.
out
=
self
.
x
*
y
def
setUp
(
self
):
super
(
TestElementwiseMulMKLDNNOp_FallbackWithReorder1
,
self
).
setUp
()
self
.
attrs
[
"x_data_format"
]
=
"nchw"
self
.
attrs
[
"y_data_format"
]
=
"nchw16c"
self
.
_cpu_only
=
True
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
def
init_axis
(
self
):
self
.
axis
=
0
def
test_check_grad_normal
(
self
):
pass
def
test_check_grad_ingore_x
(
self
):
pass
def
test_check_grad_ingore_y
(
self
):
pass
class
TestElementwiseMulMKLDNNOp_FallbackWithReorder2
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
y
=
np
.
random
.
rand
(
1
,
16
,
2
,
2
).
astype
(
self
.
dtype
)
x
=
np
.
random
.
rand
(
1
,
16
,
2
,
2
).
astype
(
self
.
dtype
)
self
.
x
=
x
.
transpose
(
0
,
2
,
3
,
1
).
reshape
(
1
,
16
,
2
,
2
)
self
.
out
=
x
*
self
.
y
def
setUp
(
self
):
super
(
TestElementwiseMulMKLDNNOp_FallbackWithReorder2
,
self
).
setUp
()
self
.
attrs
[
"x_data_format"
]
=
"nchw16c"
self
.
attrs
[
"y_data_format"
]
=
"nchw"
self
.
_cpu_only
=
True
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
def
init_axis
(
self
):
self
.
axis
=
0
def
test_check_grad_normal
(
self
):
pass
def
test_check_grad_ingore_x
(
self
):
pass
def
test_check_grad_ingore_y
(
self
):
pass
class
TestElementwiseMulMKLDNNOp_FallbackNoReorders2
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
1
,
16
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
1
,
16
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
*
self
.
y
def
setUp
(
self
):
super
(
TestElementwiseMulMKLDNNOp_FallbackNoReorders2
,
self
).
setUp
()
self
.
attrs
[
"x_data_format"
]
=
"nc"
self
.
attrs
[
"y_data_format"
]
=
"nc"
self
.
_cpu_only
=
True
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
def
init_axis
(
self
):
self
.
axis
=
0
def
test_check_grad_normal
(
self
):
pass
def
test_check_grad_ingore_x
(
self
):
pass
def
test_check_grad_ingore_y
(
self
):
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_lrn_mkldnn_op.py
浏览文件 @
03dda317
...
...
@@ -16,6 +16,7 @@ from __future__ import print_function
import
unittest
from
paddle.fluid.tests.unittests.test_lrn_op
import
TestLRNOp
import
paddle.fluid
as
fluid
class
TestLRNMKLDNNOp
(
TestLRNOp
):
...
...
@@ -47,5 +48,20 @@ class TestLRNMKLDNNOpWithIsTest(TestLRNMKLDNNOp):
self
.
assertRaises
(
AttributeError
,
check_raise_is_test
)
# TODO(jczaja): Once mkl-dnn integration support NHWC input
# then those tests should be changed to actual functional positive tests
class
TestLRNMKLDNNOpNHWC
(
TestLRNMKLDNNOp
):
def
init_test_case
(
self
):
self
.
data_format
=
'NHWC'
def
test_check_output
(
self
):
pass
# Grad tests both FWD and BWD ops kernels creation
def
test_check_grad_normal
(
self
):
with
self
.
assertRaises
(
fluid
.
core_avx
.
EnforceNotMet
):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.01
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_pool2d_mkldnn_op.py
浏览文件 @
03dda317
...
...
@@ -141,5 +141,26 @@ class TestAsymPadValid(TestAsymPad):
self
.
padding_algorithm
=
"VALID"
# Designed to Fail
# TODO(jczaja): Once mkl-dnn integration support NHWC input
# then those tests should be changed to actual functional positive tests
class
TestAsymPadValidNHWC
(
TestAsymPadValid
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
def
test_check_output
(
self
):
pass
# Grad tests both FWD and BWD ops kernels creation
# GetExpectedKernelType should throw an exception on lack of support
# to NHWC inputs in pool mkldnn kernel
def
test_check_grad
(
self
):
with
self
.
assertRaises
(
fluid
.
core_avx
.
EnforceNotMet
):
super
(
TestAsymPadValidNHWC
,
self
).
test_check_grad
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录