Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
03619037
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
03619037
编写于
2月 01, 2023
作者:
G
Guanghua Yu
提交者:
GitHub
2月 01, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Skip the int input operator when inserting a quant node & fix some bug (#49926)
上级
3a73d348
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
53 addition
and
33 deletion
+53
-33
python/paddle/static/quantization/quantization_pass.py
python/paddle/static/quantization/quantization_pass.py
+53
-33
未找到文件。
python/paddle/static/quantization/quantization_pass.py
浏览文件 @
03619037
...
...
@@ -2890,6 +2890,19 @@ class AddQuantDequantPassV2:
)
if
in_node
.
persistable
():
continue
if
in_node
.
dtype
()
not
in
[
paddle
.
float64
,
paddle
.
float32
,
paddle
.
float16
,
]:
_logger
.
warning
(
"Since the {} contains an input of type INT, the quantization of this layer is skipped."
.
format
(
op_node
.
name
()
)
)
break
if
arg_name
in
dequantized_vars_map
:
dequant_var_node
=
dequantized_vars_map
[
arg_name
]
else
:
...
...
@@ -3137,7 +3150,7 @@ class QuantWeightPass:
self
.
_save_int_weight
=
save_int_weight
assert
self
.
_scope
is
not
None
,
"scope must not be None."
assert
self
.
_place
is
not
None
,
"place must not be None."
self
.
_quantized_ops
=
set
()
self
.
_quantized_ops
=
{}
def
apply
(
self
,
graph
):
assert
isinstance
(
...
...
@@ -3176,7 +3189,6 @@ class QuantWeightPass:
quant_axis
=
_op
.
op
().
attr
(
"quant_axis"
)
bits_length
=
_op
.
op
().
attr
(
"bit_length"
)
if
x_node
.
name
()
not
in
self
.
_quantized_ops
:
self
.
_quantized_ops
.
add
(
x_node
.
name
())
quantized_param_v
=
utils
.
quant_tensor
(
param_v
.
copy
(),
scale_v
,
...
...
@@ -3211,10 +3223,13 @@ class QuantWeightPass:
self
.
_scope
,
self
.
_place
,
)
self
.
_quantized_ops
[
x_node
.
name
()]
=
quant_weight_node
for
next_op_node
in
out_node
.
outputs
:
graph
.
update_input_link
(
out_node
,
quant_weight_node
,
next_op_node
out_node
,
self
.
_quantized_ops
[
x_node
.
name
()],
next_op_node
,
)
graph
.
safe_remove_nodes
(
_op
)
self
.
_remove_unused_var_nodes
(
graph
)
...
...
@@ -3298,9 +3313,9 @@ class AddQuantDequantForInferencePass:
op_node
.
outputs
,
var_name
)
if
out_node
.
dtype
()
not
in
[
core
.
VarDesc
.
VarType
.
FP
64
,
core
.
VarDesc
.
VarType
.
FP
32
,
core
.
VarDesc
.
VarType
.
FP
16
,
paddle
.
float
64
,
paddle
.
float
32
,
paddle
.
float
16
,
]:
continue
if
var_name
in
dequantized_vars_map
:
...
...
@@ -3319,7 +3334,10 @@ class AddQuantDequantForInferencePass:
else
:
var_names
=
utils
.
_get_op_input_var_names
(
op_node
)
for
var_name
in
var_names
:
if
var_name
in
dequant_node_map
:
if
(
var_name
in
dequant_node_map
and
dequant_node_map
[
var_name
]
):
in_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
var_name
)
...
...
@@ -3345,39 +3363,41 @@ class AddQuantDequantForInferencePass:
shape
=
var_node
.
shape
(),
var_dtype
=
var_node
.
dtype
(),
)
if
not
self
.
_calibration_range_dict
:
try
:
scale_var_node
=
graph
.
_find_node_by_name
(
graph
.
all_persistable_nodes
(),
self
.
_scale_name
(
var_name
)
try
:
scale_var_node
=
graph
.
_find_node_by_name
(
graph
.
all_persistable_nodes
(),
self
.
_scale_name
(
var_name
)
)
except
:
if
(
self
.
_calibration_range_dict
and
var_name
in
self
.
_calibration_range_dict
):
scale_value
=
self
.
_calibration_range_dict
[
var_name
]
scale_var_node
=
graph
.
create_persistable_node
(
name
=
self
.
_scale_name
(
var_name
),
var_type
=
var_node
.
type
(),
shape
=
[
1
],
var_dtype
=
var_node
.
dtype
(),
)
except
:
data_type
=
(
'float64'
if
var_node
.
dtype
()
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
)
_init_var_node
(
scale_var_node
,
np
.
array
(
scale_value
,
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
,
)
else
:
_logger
.
warning
(
"Cannot find the target node {} in scope, so skip adding quant node."
.
format
(
var_name
)
)
return
None
elif
var_name
in
self
.
_calibration_range_dict
:
scale_value
=
self
.
_calibration_range_dict
[
var_name
]
scale_var_node
=
graph
.
create_persistable_node
(
name
=
self
.
_scale_name
(
var_name
),
var_type
=
var_node
.
type
(),
shape
=
[
1
],
var_dtype
=
var_node
.
dtype
(),
)
data_type
=
(
'float64'
if
var_node
.
dtype
()
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
)
_init_var_node
(
scale_var_node
,
np
.
array
(
scale_value
,
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
,
)
else
:
return
None
try
:
zero_point_node
=
graph
.
_find_node_by_name
(
graph
.
all_persistable_nodes
(),
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录