Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
02e04b44
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
02e04b44
编写于
7月 18, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fuse the conv and depthwise conv together
上级
6267312a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
104 addition
and
177 deletion
+104
-177
paddle/function/ConvOpTest.cpp
paddle/function/ConvOpTest.cpp
+104
-177
未找到文件。
paddle/function/ConvOpTest.cpp
浏览文件 @
02e04b44
...
...
@@ -25,11 +25,17 @@ enum TestType {
kBackwardFilterTest
=
2
,
};
enum
LayerType
{
convolutionType
=
0
,
depthwiseConvolutionType
=
1
,
};
template
<
DeviceType
DType1
,
DeviceType
DType2
>
class
ConvolutionTest
{
public:
ConvolutionTest
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
LayerType
layerType
,
TestType
type
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
1
,
32
})
{
...
...
@@ -37,7 +43,17 @@ public:
for
(
size_t
filterSize
:
{
1
,
3
,
5
})
{
for
(
size_t
inputChannels
:
{
3
,
64
})
{
for
(
size_t
outputChannels
:
{
3
,
64
,
128
})
{
if
(
inputChannels
<
outputChannels
)
break
;
if
(
inputChannels
>
outputChannels
)
break
;
if
(
layerType
==
depthwiseConvolutionType
&&
outputChannels
%
inputChannels
!=
0
)
break
;
size_t
groups
=
1
;
if
(
layerType
==
depthwiseConvolutionType
)
{
groups
=
inputChannels
;
}
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
...
...
@@ -62,13 +78,24 @@ public:
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
(
size_t
)
1
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
{
outputChannels
,
inputChannels
,
filterSize
,
filterSize
};
TensorShape
filter
;
if
(
layerType
==
depthwiseConvolutionType
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
(
size_t
)
1
,
filterSize
,
filterSize
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterSize
,
filterSize
});
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
...
...
@@ -105,6 +132,7 @@ class ConvolutionTest2 {
public:
ConvolutionTest2
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
LayerType
layerType
,
TestType
type
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
16
})
{
...
...
@@ -113,7 +141,16 @@ public:
for
(
size_t
filterHeight
:
{
1
,
5
})
{
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
inputChannels
:
{
7
})
{
for
(
size_t
outputChannels
:
{
32
})
{
for
(
size_t
outputChannels
:
{
7
,
32
})
{
if
(
layerType
==
depthwiseConvolutionType
&&
outputChannels
%
inputChannels
!=
0
)
break
;
size_t
groups
=
1
;
if
(
layerType
==
depthwiseConvolutionType
)
{
groups
=
inputChannels
;
}
size_t
stride
=
1
;
size_t
padding
=
0
;
size_t
outputHeight
=
...
...
@@ -141,13 +178,24 @@ public:
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
(
size_t
)
1
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
};
TensorShape
filter
{
outputChannels
,
inputChannels
,
filterHeight
,
filterWidth
};
TensorShape
filter
;
if
(
layerType
==
depthwiseConvolutionType
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
(
size_t
)
1
,
filterHeight
,
filterWidth
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterHeight
,
filterWidth
});
TensorShape
output
{
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
};
...
...
@@ -177,183 +225,46 @@ public:
}
};
template
<
DeviceType
DType1
,
DeviceType
DType2
>
class
DepthwiseConvolutionTest
{
public:
DepthwiseConvolutionTest
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
TestType
type
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
1
,
32
})
{
for
(
size_t
inputSize
:
{
7
,
14
,
54
})
{
for
(
size_t
filterSize
:
{
1
,
3
,
5
})
{
for
(
size_t
inputChannels
:
{
64
,
128
})
{
size_t
outputChannels
=
inputChannels
;
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
size_t
groups
=
inputChannels
;
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
{
inputChannels
,
1
,
1
,
filterSize
,
filterSize
};
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
();
}
}
}
}
}
}
}
}
};
// Mainly used to test cases where the height and width (input, filter)
// are not equal.
template
<
DeviceType
DType1
,
DeviceType
DType2
>
class
DepthwiseConvolutionTest2
{
public:
DepthwiseConvolutionTest2
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
TestType
type
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
16
})
{
for
(
size_t
inputHeight
:
{
7
,
31
})
{
for
(
size_t
inputWidth
:
{
10
,
54
})
{
for
(
size_t
filterHeight
:
{
1
,
5
})
{
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
inputChannels
:
{
32
})
{
size_t
outputChannels
=
inputChannels
;
size_t
stride
=
1
;
size_t
padding
=
0
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
size_t
outputWidth
=
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputHeight
<<
" inputWidth="
<<
inputWidth
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterHeight
<<
" filterWidth="
<<
filterWidth
<<
" outputHeight="
<<
outputHeight
<<
" outputWidth="
<<
outputWidth
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
size_t
groups
=
inputChannels
;
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
};
TensorShape
filter
{
inputChannels
,
1
,
1
,
filterHeight
,
filterWidth
};
TensorShape
output
{
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
();
}
}
}
}
}
}
}
}
};
// ======Start Convolution TEST======
TEST
(
Forward
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
kForwardTest
);
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
convolutionType
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test2
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
kForwardTest
);
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
convolutionType
,
kForwardTest
);
}
#ifndef PADDLE_ONLY_CPU
TEST
(
Forward
,
GEMM2
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
);
"GemmConv-CPU"
,
"GemmConv-GPU"
,
convolutionType
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
);
"GemmConv-CPU"
,
"GemmConv-GPU"
,
convolutionType
,
kForwardTest
);
}
TEST
(
BackwardInput
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
);
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
convolutionType
,
kBackwardInputTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
);
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
convolutionType
,
kBackwardInputTest
);
}
TEST
(
BackwardFilter
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
);
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
convolutionType
,
kBackwardFilterTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
);
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
convolutionType
,
kBackwardFilterTest
);
}
#endif
// ======End Convolution TEST======
...
...
@@ -364,38 +275,54 @@ TEST(BackwardFilter, GEMM) {
#ifndef PADDLE_ONLY_CPU
TEST
(
DepthwiseConvForward
,
GEMM
)
{
DepthwiseConvolutionTest
<
DEVICE_TYPE_GPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-GPU"
,
"DepthwiseConv-GPU"
,
kForwardTest
);
DepthwiseConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-GPU"
,
"DepthwiseConv-GPU"
,
kForwardTest
);
ConvolutionTest
<
DEVICE_TYPE_GPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
}
TEST
(
DepthwiseConvForward
,
GEMM2
)
{
DepthwiseConvolutionTest
<
DEVICE_TYPE_GPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConv-GPU"
,
"DepthwiseConv-GPU"
,
kForwardTest
);
DepthwiseConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConv-GPU"
,
"DepthwiseConv-GPU"
,
kForwardTest
);
ConvolutionTest
<
DEVICE_TYPE_GPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
}
TEST
(
DepthwiseConvBackwardInput
,
GEMM
)
{
Depthwise
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConvGradInput-GPU"
,
"DepthwiseConvGradInput-GPU"
,
depthwiseConvolutionType
,
kBackwardInputTest
);
Depthwise
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConvGradInput-GPU"
,
"DepthwiseConvGradInput-GPU"
,
depthwiseConvolutionType
,
kBackwardInputTest
);
}
TEST
(
DepthwiseConvBackwardFilter
,
GEMM
)
{
Depthwise
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConvGradFilter-GPU"
,
"DepthwiseConvGradFilter-GPU"
,
depthwiseConvolutionType
,
kBackwardFilterTest
);
Depthwise
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConvGradFilter-GPU"
,
"DepthwiseConvGradFilter-GPU"
,
depthwiseConvolutionType
,
kBackwardFilterTest
);
}
#endif
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录