未验证 提交 02c36e00 编写于 作者: W WangZhen 提交者: GitHub

Add test_resnet for prim and CINN (#50123)

Add test_resnet for prim and CINN
上级 f35de273
...@@ -7,3 +7,9 @@ string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") ...@@ -7,3 +7,9 @@ string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
foreach(TEST_OP ${TEST_OPS}) foreach(TEST_OP ${TEST_OPS})
py_test_modules(${TEST_OP} MODULES ${TEST_OP} ENVS ${GC_ENVS}) py_test_modules(${TEST_OP} MODULES ${TEST_OP} ENVS ${GC_ENVS})
endforeach() endforeach()
set_tests_properties(test_resnet_prim_cinn PROPERTIES TIMEOUT 300)
if(WITH_CINN)
set_tests_properties(test_resnet_prim_cinn PROPERTIES LABELS "RUN_TYPE=CINN")
endif()
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
import time
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.vision.models import resnet50
SEED = 2020
base_lr = 0.001
momentum_rate = 0.9
l2_decay = 1e-4
batch_size = 2
epoch_num = 1
if core.is_compiled_with_cuda():
paddle.set_flags({'FLAGS_cudnn_deterministic': True})
def reader_decorator(reader):
def __reader__():
for item in reader():
img = np.array(item[0]).astype('float32').reshape(3, 224, 224)
label = np.array(item[1]).astype('int64').reshape(1)
yield img, label
return __reader__
def optimizer_setting(parameter_list=None):
optimizer = fluid.optimizer.Momentum(
learning_rate=base_lr,
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay),
parameter_list=parameter_list,
)
return optimizer
def train(to_static, enable_prim, enable_cinn):
if core.is_compiled_with_cuda():
paddle.set_device('gpu')
else:
paddle.set_device('cpu')
np.random.seed(SEED)
paddle.seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
fluid.core._set_prim_all_enabled(
enable_prim and platform.system() == 'Linux'
)
train_reader = paddle.batch(
reader_decorator(paddle.dataset.flowers.train(use_xmap=False)),
batch_size=batch_size,
drop_last=True,
)
data_loader = fluid.io.DataLoader.from_generator(capacity=5, iterable=True)
data_loader.set_sample_list_generator(train_reader)
resnet = resnet50(False)
if to_static:
build_strategy = paddle.static.BuildStrategy()
if enable_cinn:
build_strategy.build_cinn_pass = True
resnet = paddle.jit.to_static(resnet, build_strategy=build_strategy)
optimizer = optimizer_setting(parameter_list=resnet.parameters())
for epoch in range(epoch_num):
total_acc1 = 0.0
total_acc5 = 0.0
total_sample = 0
losses = []
for batch_id, data in enumerate(data_loader()):
start_time = time.time()
img, label = data
pred = resnet(img)
avg_loss = paddle.nn.functional.cross_entropy(
input=pred,
label=label,
soft_label=False,
reduction='mean',
use_softmax=True,
)
acc_top1 = paddle.static.accuracy(input=pred, label=label, k=1)
acc_top5 = paddle.static.accuracy(input=pred, label=label, k=5)
avg_loss.backward()
optimizer.minimize(avg_loss)
resnet.clear_gradients()
total_acc1 += acc_top1
total_acc5 += acc_top5
total_sample += 1
losses.append(avg_loss.numpy())
end_time = time.time()
print(
"epoch %d | batch step %d, loss %0.8f, acc1 %0.3f, acc5 %0.3f, time %f"
% (
epoch,
batch_id,
avg_loss,
total_acc1.numpy() / total_sample,
total_acc5.numpy() / total_sample,
end_time - start_time,
)
)
if batch_id == 10:
# avoid dataloader throw abort signaal
data_loader._reset()
break
return losses
class TestResnet(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.dy2st = train(to_static=True, enable_prim=False, enable_cinn=False)
def test_prim(self):
dy2st_prim = train(to_static=True, enable_prim=True, enable_cinn=False)
# NOTE: Now dy2st is equal to dy2st_prim. With the splitting of kernels, the threshold here may need to be adjusted
np.testing.assert_allclose(self.dy2st, dy2st_prim, rtol=1e-6)
@unittest.skipIf(
not paddle.is_compiled_with_cinn(), "padle is not compiled with CINN"
)
def test_cinn(self):
dy2st_cinn = train(to_static=True, enable_prim=False, enable_cinn=True)
# TODO(0x45f): The following is only temporary thresholds, and the final thresholds needs to be discussed
np.testing.assert_allclose(self.dy2st[0:2], dy2st_cinn[0:2], rtol=1e-3)
np.testing.assert_allclose(self.dy2st, dy2st_cinn, rtol=1e-1)
@unittest.skipIf(
not paddle.is_compiled_with_cinn(), "padle is not compiled with CINN"
)
def test_prim_cinn(self):
dy2st_prim_cinn = train(
to_static=True, enable_prim=True, enable_cinn=True
)
# TODO(0x45f): The following is only temporary thresholds, and the final thresholds need to be discussed
np.testing.assert_allclose(
self.dy2st[0:2], dy2st_prim_cinn[0:2], rtol=1e-2
)
np.testing.assert_allclose(self.dy2st, dy2st_prim_cinn, rtol=1e-1)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册