Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0250e54c
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0250e54c
编写于
1月 03, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enable batch input in edit_distance_op
上级
2e49faca
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
189 addition
and
101 deletion
+189
-101
paddle/operators/edit_distance_op.cc
paddle/operators/edit_distance_op.cc
+31
-18
paddle/operators/edit_distance_op.cu
paddle/operators/edit_distance_op.cu
+58
-40
paddle/operators/edit_distance_op.h
paddle/operators/edit_distance_op.h
+55
-36
python/paddle/v2/fluid/tests/test_edit_distance_op.py
python/paddle/v2/fluid/tests/test_edit_distance_op.py
+45
-7
未找到文件。
paddle/operators/edit_distance_op.cc
浏览文件 @
0250e54c
...
@@ -22,10 +22,18 @@ class EditDistanceOp : public framework::OperatorWithKernel {
...
@@ -22,10 +22,18 @@ class EditDistanceOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Hyp
"
),
"Input(Hyp
) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Hyp
s"
),
"Input(Hyps
) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ref
"
),
"Input(Ref
) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ref
s"
),
"Input(Refs
) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) shouldn't be null."
);
ctx
->
SetOutputDim
(
"Out"
,
{
1
});
auto
hyp_dims
=
ctx
->
GetInputDim
(
"Hyps"
);
auto
ref_dims
=
ctx
->
GetInputDim
(
"Refs"
);
PADDLE_ENFORCE
(
hyp_dims
.
size
()
==
2
&&
hyp_dims
[
1
]
==
1
,
"Input(Hyps) must be a 2-D LoDTensor with the 2nd dimension "
"equal to 1."
);
PADDLE_ENFORCE
(
ref_dims
.
size
()
==
2
&&
ref_dims
[
1
]
==
1
,
"Input(Refs) must be a 2-D LoDTensor with the 2nd dimension "
"equal to 1."
);
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"Refs"
));
}
}
protected:
protected:
...
@@ -40,24 +48,23 @@ class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -40,24 +48,23 @@ class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
EditDistanceOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
EditDistanceOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Hyp"
,
AddInput
(
"Hyp
s
"
,
"(2-D
tensor with shape [M x 1]) The indices for
"
"(2-D
LoDTensor, 2nd dim. equal to 1)
"
"
hypothesis string
"
);
"
The indices for hypothesis strings.
"
);
AddInput
(
"Ref"
,
AddInput
(
"Ref
s
"
,
"(2-D
tensor with shape [N x 1]) The indices
"
"(2-D
LoDTensor, 2nd dim. equal to 1)
"
"
for reference string
."
);
"
The indices for reference strings
."
);
AddAttr
<
bool
>
(
"normalized"
,
AddAttr
<
bool
>
(
"normalized"
,
"(bool, default false) Indicated whether "
"(bool, default false) Indicated whether to normalize "
"normalize the Output(Out) by the length of reference "
"the edit distance by the length of reference string."
)
"string (Ref)."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(2-D
tensor with shape [1
x 1]) "
"(2-D
Tensor with shape [`batch_size`
x 1]) "
"The output
distance
of EditDistance operator."
);
"The output
edit distances
of EditDistance operator."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
EditDistance operator computes the edit distance
of two sequences, one named
EditDistance operator computes the edit distance
s between a batch of hypothesis
hypothesis with length M and another named reference with length N
.
strings and their references
.
Edit distance, also called Levenshtein distance, measures how dissimilar two strings
Edit distance, also called Levenshtein distance, measures how dissimilar two strings
are by counting the minimum number of operations to transform one string into anthor.
are by counting the minimum number of operations to transform one string into anthor.
...
@@ -68,8 +75,14 @@ insertion:
...
@@ -68,8 +75,14 @@ insertion:
"kitten" -> "sitten" -> "sittin" -> "sitting"
"kitten" -> "sitten" -> "sittin" -> "sitting"
If Attr(normalized) is true, the edit distance will be divided by the length of
Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total
reference string N.
number denoted by `batch_size`, and the separation is specified by the LoD information.
And the `batch_size` reference strings are arranged in order in the same way in the
LoDTensor Input(Refs).
Output(Out) contains the `batch_size` results and each stands for the edit stance
for a pair of strings respectively. If Attr(normalized) is true, the edit distance
will be divided by the length of reference string.
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/edit_distance_op.cu
浏览文件 @
0250e54c
...
@@ -70,53 +70,71 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
...
@@ -70,53 +70,71 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out_t
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out_t
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
x1_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Hyp"
);
auto
*
x1_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Hyps"
);
auto
*
x2_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Ref"
);
auto
*
x2_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Refs"
);
out_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out
=
out_t
->
data
<
T
>
();
auto
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
auto
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
ctx
.
device_context
())
.
stream
();
.
stream
();
auto
m
=
x1_t
->
numel
();
auto
hyp_lod
=
x1_t
->
lod
()[
0
];
auto
n
=
x2_t
->
numel
();
auto
ref_lod
=
x2_t
->
lod
()[
0
];
T
distance
=
0.0
;
PADDLE_ENFORCE
(
if
(
m
==
0
||
n
==
0
)
{
hyp_lod
.
size
()
==
ref_lod
.
size
(),
distance
=
std
::
max
(
m
,
n
);
"Input(Hyps) and Input(Refs) must have the same batch size."
);
if
(
normalized
)
{
for
(
size_t
i
=
1
;
i
<
ref_lod
.
size
();
++
i
)
{
distance
=
distance
/
n
;
PADDLE_ENFORCE
(
ref_lod
[
i
]
>
ref_lod
[
i
-
1
],
}
"Reference string %d is empty."
,
i
);
memory
::
Copy
(
boost
::
get
<
Place
>
(
ctx
.
GetPlace
()),
out
,
platform
::
CPUPlace
(),
}
&
distance
,
sizeof
(
T
),
stream
);
}
else
{
auto
num_strs
=
hyp_lod
.
size
()
-
1
;
framework
::
Tensor
dist_t
;
out_t
->
Resize
({
static_cast
<
int64_t
>
(
num_strs
),
1
});
dist_t
.
Resize
({
m
+
1
,
n
+
1
});
out_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dist_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out
=
out_t
->
data
<
T
>
();
auto
dist
=
dist_t
.
data
<
T
>
();
auto
x1
=
x1_t
->
data
<
int
>
();
std
::
vector
<
T
>
distance
(
num_strs
,
0.0
);
auto
x2
=
x2_t
->
data
<
int
>
();
for
(
size_t
num
=
0
;
num
<
num_strs
;
num
++
)
{
auto
m
=
static_cast
<
int64_t
>
(
hyp_lod
[
num
+
1
]
-
hyp_lod
[
num
]);
FillFirstColumn
<
T
><<<
1
+
m
/
PADDLE_CUDA_NUM_THREADS
,
auto
n
=
static_cast
<
int64_t
>
(
ref_lod
[
num
+
1
]
-
ref_lod
[
num
]);
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
m
,
n
);
if
(
m
==
0
||
n
==
0
)
{
distance
[
num
]
=
std
::
max
(
m
,
n
);
FillFirstRow
<
T
><<<
1
+
n
/
PADDLE_CUDA_NUM_THREADS
,
if
(
normalized
)
{
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
n
);
PADDLE_ENFORCE
(
n
>
0
,
// Compute the elements of distance matrix in the anti-diagonal diretion
"The reference string (#%d) cannot be empty "
for
(
int64_t
slice
=
2
;
slice
<
m
+
n
+
1
;
++
slice
)
{
"when Attr(normalized) is enabled."
,
int
z_m
=
slice
<
m
+
1
?
0
:
slice
-
m
;
n
);
int
z_n
=
slice
<
n
+
1
?
0
:
slice
-
n
;
distance
[
num
]
=
distance
[
num
]
/
n
;
int
size
=
slice
-
(
z_m
+
z_n
)
+
1
;
// number of elments in the same
}
// anti-diagonal line to update
memory
::
Copy
(
boost
::
get
<
Place
>
(
ctx
.
GetPlace
()),
out
+
num
,
// the start index at which computes from
platform
::
CPUPlace
(),
&
distance
[
num
],
sizeof
(
T
),
stream
);
int
start
=
slice
<
n
+
1
?
slice
:
(
z_n
+
1
)
*
(
n
+
1
)
-
1
;
}
else
{
Levenshtein
<
T
><<<
1
+
(
size
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
framework
::
Tensor
dist_t
;
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
x1
,
x2
,
m
,
dist_t
.
Resize
({
m
+
1
,
n
+
1
});
n
,
start
);
dist_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dist
=
dist_t
.
data
<
T
>
();
auto
x1
=
x1_t
->
data
<
int
>
()
+
hyp_lod
[
num
];
auto
x2
=
x2_t
->
data
<
int
>
()
+
ref_lod
[
num
];
FillFirstColumn
<
T
><<<
1
+
m
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
m
,
n
);
FillFirstRow
<
T
><<<
1
+
n
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
n
);
// Compute the elements of distance matrix in the anti-diagonal diretion
for
(
int64_t
slice
=
2
;
slice
<
m
+
n
+
1
;
++
slice
)
{
int
z_m
=
slice
<
m
+
1
?
0
:
slice
-
m
;
int
z_n
=
slice
<
n
+
1
?
0
:
slice
-
n
;
int
size
=
slice
-
(
z_m
+
z_n
)
+
1
;
// number of elments in the same
// anti-diagonal line to update
// the start index at which computes from
int
start
=
slice
<
n
+
1
?
slice
:
(
z_n
+
1
)
*
(
n
+
1
)
-
1
;
Levenshtein
<
T
><<<
1
+
(
size
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
dist
,
x1
,
x2
,
m
,
n
,
start
);
}
SetOutput
<
T
><<<
1
,
1
,
0
,
stream
>>>
(
out
+
num
,
dist
,
m
,
n
,
normalized
);
}
}
SetOutput
<
T
><<<
1
,
1
,
0
,
stream
>>>
(
out
,
dist
,
m
,
n
,
normalized
);
}
}
}
}
};
};
...
...
paddle/operators/edit_distance_op.h
浏览文件 @
0250e54c
...
@@ -26,50 +26,69 @@ class EditDistanceKernel : public framework::OpKernel<T> {
...
@@ -26,50 +26,69 @@ class EditDistanceKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out_t
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out_t
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
x1_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Hyp
"
);
auto
*
x1_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Hyps
"
);
auto
*
x2_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Ref
"
);
auto
*
x2_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Refs
"
);
auto
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
auto
hyp_lod
=
x1_t
->
lod
()[
0
];
auto
ref_lod
=
x2_t
->
lod
()[
0
];
PADDLE_ENFORCE
(
hyp_lod
.
size
()
==
ref_lod
.
size
(),
"Input(Hyps) and Input(Refs) must have the same batch size."
);
for
(
size_t
i
=
1
;
i
<
ref_lod
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
ref_lod
[
i
]
>
ref_lod
[
i
-
1
],
"Reference string %d is empty."
,
i
);
}
auto
num_strs
=
hyp_lod
.
size
()
-
1
;
out_t
->
Resize
({
static_cast
<
int64_t
>
(
num_strs
),
1
});
out_t
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
out_t
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
auto
out
=
out_t
->
data
<
T
>
();
auto
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
std
::
vector
<
T
>
distance
(
num_strs
,
0.0
);
for
(
size_t
num
=
0
;
num
<
num_strs
;
++
num
)
{
auto
m
=
static_cast
<
int64_t
>
(
hyp_lod
[
num
+
1
]
-
hyp_lod
[
num
]);
auto
n
=
static_cast
<
int64_t
>
(
ref_lod
[
num
+
1
]
-
ref_lod
[
num
]);
auto
m
=
x1_t
->
numel
();
if
(
m
==
0
)
{
auto
n
=
x2_t
->
numel
();
distance
[
num
]
=
n
;
T
distance
=
0.0
;
}
else
if
(
n
==
0
)
{
if
(
m
==
0
)
{
distance
[
num
]
=
m
;
distance
=
n
;
}
else
{
}
else
if
(
n
==
0
)
{
framework
::
Tensor
dist_t
;
distance
=
m
;
dist_t
.
Resize
({
m
+
1
,
n
+
1
});
}
else
{
dist_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
Tensor
dist_t
;
auto
dist
=
dist_t
.
data
<
T
>
();
dist_t
.
Resize
({
m
+
1
,
n
+
1
});
auto
x1
=
x1_t
->
data
<
int
>
()
+
hyp_lod
[
num
];
dist_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x2
=
x2_t
->
data
<
int
>
()
+
ref_lod
[
num
];
auto
dist
=
dist_t
.
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
m
+
1
;
++
i
)
{
auto
x1
=
x1_t
->
data
<
int
>
();
dist
[
i
*
(
n
+
1
)]
=
i
;
auto
x2
=
x2_t
->
data
<
int
>
();
}
for
(
int64_t
i
=
0
;
i
<
m
+
1
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
n
+
1
;
++
j
)
{
dist
[
i
*
(
n
+
1
)]
=
i
;
dist
[
j
]
=
j
;
}
}
for
(
int64_t
j
=
0
;
j
<
n
+
1
;
++
j
)
{
for
(
int64_t
i
=
1
;
i
<
m
+
1
;
++
i
)
{
dist
[
j
]
=
j
;
for
(
int64_t
j
=
1
;
j
<
n
+
1
;
++
j
)
{
}
int
cost
=
x1
[
i
-
1
]
==
x2
[
j
-
1
]
?
0
:
1
;
for
(
int64_t
i
=
1
;
i
<
m
+
1
;
++
i
)
{
int
dels
=
dist
[(
i
-
1
)
*
(
n
+
1
)
+
j
]
+
1
;
for
(
int64_t
j
=
1
;
j
<
n
+
1
;
++
j
)
{
int
ins
=
dist
[
i
*
(
n
+
1
)
+
(
j
-
1
)]
+
1
;
int
cost
=
x1
[
i
-
1
]
==
x2
[
j
-
1
]
?
0
:
1
;
int
subs
=
dist
[(
i
-
1
)
*
(
n
+
1
)
+
(
j
-
1
)]
+
cost
;
int
dels
=
dist
[(
i
-
1
)
*
(
n
+
1
)
+
j
]
+
1
;
dist
[
i
*
(
n
+
1
)
+
j
]
=
std
::
min
(
dels
,
std
::
min
(
ins
,
subs
));
int
ins
=
dist
[
i
*
(
n
+
1
)
+
(
j
-
1
)]
+
1
;
}
int
subs
=
dist
[(
i
-
1
)
*
(
n
+
1
)
+
(
j
-
1
)]
+
cost
;
dist
[
i
*
(
n
+
1
)
+
j
]
=
std
::
min
(
dels
,
std
::
min
(
ins
,
subs
));
}
}
distance
[
num
]
=
dist
[
m
*
(
n
+
1
)
+
n
];
}
}
distance
=
dist
[
m
*
(
n
+
1
)
+
n
];
}
if
(
normalized
)
{
if
(
normalized
)
{
distance
=
distance
/
n
;
PADDLE_ENFORCE
(
n
>
0
,
"The reference string (#%d) cannot be empty "
"when Attr(normalized) is enabled."
,
n
);
distance
[
num
]
=
distance
[
num
]
/
n
;
}
out
[
num
]
=
distance
[
num
];
}
}
auto
out
=
out_t
->
data
<
T
>
();
out
[
0
]
=
distance
;
}
}
};
};
...
...
python/paddle/v2/fluid/tests/test_edit_distance_op.py
浏览文件 @
0250e54c
...
@@ -18,7 +18,7 @@ def Levenshtein(hyp, ref):
...
@@ -18,7 +18,7 @@ def Levenshtein(hyp, ref):
if
n
==
0
:
if
n
==
0
:
return
m
return
m
dist
=
np
.
zeros
((
m
+
1
,
n
+
1
))
dist
=
np
.
zeros
((
m
+
1
,
n
+
1
))
.
astype
(
"float32"
)
for
i
in
range
(
0
,
m
+
1
):
for
i
in
range
(
0
,
m
+
1
):
dist
[
i
][
0
]
=
i
dist
[
i
][
0
]
=
i
for
j
in
range
(
0
,
n
+
1
):
for
j
in
range
(
0
,
n
+
1
):
...
@@ -35,17 +35,55 @@ def Levenshtein(hyp, ref):
...
@@ -35,17 +35,55 @@ def Levenshtein(hyp, ref):
class
TestCTCEditDistanceOp
(
OpTest
):
class
TestCTCEditDistanceOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"edit_distance"
normalized
=
False
x1
=
np
.
array
([[
0
,
12
,
3
,
5
,
8
,
2
]]).
astype
(
"int32"
)
x2
=
np
.
array
([[
0
,
12
,
4
,
7
,
8
]]).
astype
(
"int32"
)
x1
=
np
.
transpose
(
x1
)
x2
=
np
.
transpose
(
x2
)
x1_lod
=
[
0
,
1
,
5
]
x2_lod
=
[
0
,
3
,
4
]
num_strs
=
len
(
x1_lod
)
-
1
distance
=
np
.
zeros
((
num_strs
,
1
)).
astype
(
"float32"
)
for
i
in
range
(
0
,
num_strs
):
distance
[
i
]
=
Levenshtein
(
hyp
=
x1
[
x1_lod
[
i
]:
x1_lod
[
i
+
1
]],
ref
=
x2
[
x2_lod
[
i
]:
x2_lod
[
i
+
1
]])
if
normalized
is
True
:
len_ref
=
x2_lod
[
i
+
1
]
-
x2_lod
[
i
]
distance
[
i
]
=
distance
[
i
]
/
len_ref
self
.
attrs
=
{
'normalized'
:
normalized
}
self
.
inputs
=
{
'Hyps'
:
(
x1
,
[
x1_lod
]),
'Refs'
:
(
x2
,
[
x2_lod
])}
self
.
outputs
=
{
'Out'
:
distance
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestCTCEditDistanceOpNormalized
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"edit_distance"
self
.
op_type
=
"edit_distance"
normalized
=
True
normalized
=
True
x1
=
np
.
array
([
0
,
12
,
3
,
5
]).
astype
(
"int32"
)
x1
=
np
.
array
([[
0
,
10
,
3
,
6
,
5
,
8
,
2
]]).
astype
(
"int32"
)
x2
=
np
.
array
([
0
,
12
,
4
,
7
,
8
]).
astype
(
"int32"
)
x2
=
np
.
array
([[
0
,
10
,
4
,
6
,
7
,
8
]]).
astype
(
"int32"
)
x1
=
np
.
transpose
(
x1
)
x2
=
np
.
transpose
(
x2
)
x1_lod
=
[
0
,
1
,
3
,
6
]
x2_lod
=
[
0
,
2
,
3
,
5
]
distance
=
Levenshtein
(
hyp
=
x1
,
ref
=
x2
)
num_strs
=
len
(
x1_lod
)
-
1
if
normalized
is
True
:
distance
=
np
.
zeros
((
num_strs
,
1
)).
astype
(
"float32"
)
distance
=
distance
/
len
(
x2
)
for
i
in
range
(
0
,
num_strs
):
distance
[
i
]
=
Levenshtein
(
hyp
=
x1
[
x1_lod
[
i
]:
x1_lod
[
i
+
1
]],
ref
=
x2
[
x2_lod
[
i
]:
x2_lod
[
i
+
1
]])
if
normalized
is
True
:
len_ref
=
x2_lod
[
i
+
1
]
-
x2_lod
[
i
]
distance
[
i
]
=
distance
[
i
]
/
len_ref
self
.
attrs
=
{
'normalized'
:
normalized
}
self
.
attrs
=
{
'normalized'
:
normalized
}
self
.
inputs
=
{
'Hyp
'
:
x1
,
'Ref'
:
x2
}
self
.
inputs
=
{
'Hyp
s'
:
(
x1
,
[
x1_lod
]),
'Refs'
:
(
x2
,
[
x2_lod
])
}
self
.
outputs
=
{
'Out'
:
distance
}
self
.
outputs
=
{
'Out'
:
distance
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录