Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
01f5210e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
01f5210e
编写于
12月 08, 2022
作者:
C
Chang Xu
提交者:
GitHub
12月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add QuantizedMatmul in QAT (#47997)
上级
94fe929a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
298 addition
and
0 deletion
+298
-0
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
+4
-0
python/paddle/fluid/contrib/slim/tests/test_imperative_qat_matmul.py
...le/fluid/contrib/slim/tests/test_imperative_qat_matmul.py
+234
-0
python/paddle/nn/quant/quant_layers.py
python/paddle/nn/quant/quant_layers.py
+60
-0
未找到文件。
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
浏览文件 @
01f5210e
...
...
@@ -253,6 +253,8 @@ if(WIN32)
list
(
REMOVE_ITEM TEST_OPS test_quantize_transpiler_v2
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_qat_amp
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_qat_lsq
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_qat_matmul
)
endif
()
if
(
LINUX AND WITH_MKLDNN
)
...
...
@@ -507,6 +509,7 @@ if(WIN32)
test_imperative_qat_channelwise
test_imperative_qat
test_imperative_qat_lsq
test_imperative_qat_matmul
test_imperative_out_scale
test_graph
)
list
(
REMOVE_ITEM TEST_OPS
${
SINGLE_CARD_TEST_OPS
}
)
...
...
@@ -547,6 +550,7 @@ set_tests_properties(test_imperative_qat_fuse PROPERTIES TIMEOUT 200)
set_tests_properties
(
test_imperative_out_scale PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_imperative_qat_user_defined PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_imperative_qat_lsq PROPERTIES TIMEOUT 300
)
set_tests_properties
(
test_imperative_qat_matmul PROPERTIES TIMEOUT 300
)
if
(
LINUX AND WITH_MKLDNN
)
set_tests_properties
(
test_quant2_int8_mobilenetv1_mkldnn PROPERTIES TIMEOUT
...
...
python/paddle/fluid/contrib/slim/tests/test_imperative_qat_matmul.py
0 → 100644
浏览文件 @
01f5210e
# copyright (c) 2022 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
os
import
numpy
as
np
import
random
import
time
import
tempfile
import
unittest
import
logging
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
(
SGDOptimizer
,
AdamOptimizer
,
MomentumOptimizer
,
)
from
paddle.fluid.contrib.slim.quantization
import
ImperativeQuantAware
from
paddle.nn
import
Sequential
from
paddle.nn
import
ReLU
,
ReLU6
,
LeakyReLU
,
Sigmoid
,
Softmax
,
PReLU
from
paddle.nn
import
Linear
,
Conv2D
,
Softmax
,
BatchNorm2D
,
MaxPool2D
from
paddle.fluid.log_helper
import
get_logger
from
paddle.fluid.dygraph.io
import
INFER_MODEL_SUFFIX
,
INFER_PARAMS_SUFFIX
from
paddle.nn.quant.quant_layers
import
(
QuantizedConv2D
,
QuantizedMatmul
,
)
from
paddle.fluid.framework
import
_test_eager_guard
from
imperative_test_utils
import
fix_model_dict
paddle
.
enable_static
()
os
.
environ
[
"CPU_NUM"
]
=
"1"
if
core
.
is_compiled_with_cuda
():
fluid
.
set_flags
({
"FLAGS_cudnn_deterministic"
:
True
})
_logger
=
get_logger
(
__name__
,
logging
.
INFO
,
fmt
=
'%(asctime)s-%(levelname)s: %(message)s'
)
class
ImperativeLenet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_classes
=
10
):
super
().
__init__
()
conv2d_w1_attr
=
fluid
.
ParamAttr
(
name
=
"conv2d_w_1"
)
conv2d_w2_attr
=
fluid
.
ParamAttr
(
name
=
"conv2d_w_2"
)
fc_w1_attr
=
fluid
.
ParamAttr
(
name
=
"fc_w_1"
)
fc_w2_attr
=
fluid
.
ParamAttr
(
name
=
"fc_w_2"
)
fc_w3_attr
=
fluid
.
ParamAttr
(
name
=
"fc_w_3"
)
conv2d_b2_attr
=
fluid
.
ParamAttr
(
name
=
"conv2d_b_2"
)
fc_b1_attr
=
fluid
.
ParamAttr
(
name
=
"fc_b_1"
)
fc_b2_attr
=
fluid
.
ParamAttr
(
name
=
"fc_b_2"
)
fc_b3_attr
=
fluid
.
ParamAttr
(
name
=
"fc_b_3"
)
self
.
features
=
Sequential
(
Conv2D
(
in_channels
=
1
,
out_channels
=
6
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
weight_attr
=
conv2d_w1_attr
,
bias_attr
=
False
,
),
BatchNorm2D
(
6
),
ReLU
(),
MaxPool2D
(
kernel_size
=
2
,
stride
=
2
),
Conv2D
(
in_channels
=
6
,
out_channels
=
16
,
kernel_size
=
5
,
stride
=
1
,
padding
=
0
,
weight_attr
=
conv2d_w2_attr
,
bias_attr
=
conv2d_b2_attr
,
),
BatchNorm2D
(
16
),
PReLU
(),
MaxPool2D
(
kernel_size
=
2
,
stride
=
2
),
)
self
.
matmul
=
QuantizedMatmul
()
self
.
fc
=
Sequential
(
Linear
(
in_features
=
400
,
out_features
=
120
,
weight_attr
=
fc_w1_attr
,
bias_attr
=
fc_b1_attr
,
),
LeakyReLU
(),
Linear
(
in_features
=
120
,
out_features
=
84
,
weight_attr
=
fc_w2_attr
,
bias_attr
=
fc_b2_attr
,
),
Sigmoid
(),
Linear
(
in_features
=
84
,
out_features
=
num_classes
,
weight_attr
=
fc_w3_attr
,
bias_attr
=
fc_b3_attr
,
),
Softmax
(),
)
def
forward
(
self
,
inputs
):
inputs
=
self
.
features
(
inputs
)
inputs
=
self
.
matmul
(
inputs
,
inputs
,
transpose_y
=
True
)
inputs
=
paddle
.
flatten
(
inputs
,
1
)
x
=
self
.
fc
(
inputs
)
return
x
class
TestImperativeQatMatmul
(
unittest
.
TestCase
):
def
set_vars
(
self
):
self
.
weight_quantize_type
=
'abs_max'
self
.
activation_quantize_type
=
'moving_average_abs_max'
self
.
onnx_format
=
True
self
.
fuse_conv_bn
=
False
def
func_qat
(
self
):
self
.
set_vars
()
imperative_qat
=
ImperativeQuantAware
(
weight_quantize_type
=
self
.
weight_quantize_type
,
activation_quantize_type
=
self
.
activation_quantize_type
,
fuse_conv_bn
=
self
.
fuse_conv_bn
,
)
seed
=
100
np
.
random
.
seed
(
seed
)
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
paddle
.
disable_static
()
lenet
=
ImperativeLenet
()
lenet
=
fix_model_dict
(
lenet
)
imperative_qat
.
quantize
(
lenet
)
optimizer
=
MomentumOptimizer
(
learning_rate
=
0.1
,
parameter_list
=
lenet
.
parameters
(),
momentum
=
0.9
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
64
,
drop_last
=
True
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
32
)
epoch_num
=
1
for
epoch
in
range
(
epoch_num
):
lenet
.
train
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]
).
astype
(
'float32'
)
y_data
=
(
np
.
array
([
x
[
1
]
for
x
in
data
])
.
astype
(
'int64'
)
.
reshape
(
-
1
,
1
)
)
img
=
fluid
.
dygraph
.
to_variable
(
x_data
)
label
=
fluid
.
dygraph
.
to_variable
(
y_data
)
out
=
lenet
(
img
)
acc
=
paddle
.
static
.
accuracy
(
out
,
label
)
loss
=
fluid
.
layers
.
cross_entropy
(
out
,
label
)
avg_loss
=
paddle
.
mean
(
loss
)
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
)
lenet
.
clear_gradients
()
if
batch_id
%
100
==
0
:
_logger
.
info
(
"Train | At epoch {} step {}: loss = {:}, acc= {:}"
.
format
(
epoch
,
batch_id
,
avg_loss
.
numpy
(),
acc
.
numpy
()
)
)
lenet
.
eval
()
eval_acc_top1_list
=
[]
with
paddle
.
no_grad
():
for
batch_id
,
data
in
enumerate
(
test_reader
()):
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]
).
astype
(
'float32'
)
y_data
=
(
np
.
array
([
x
[
1
]
for
x
in
data
])
.
astype
(
'int64'
)
.
reshape
(
-
1
,
1
)
)
img
=
fluid
.
dygraph
.
to_variable
(
x_data
)
label
=
fluid
.
dygraph
.
to_variable
(
y_data
)
out
=
lenet
(
img
)
acc_top1
=
paddle
.
static
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
paddle
.
static
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
if
batch_id
%
100
==
0
:
eval_acc_top1_list
.
append
(
float
(
acc_top1
.
numpy
()))
_logger
.
info
(
"Test | At epoch {} step {}: acc1 = {:}, acc5 = {:}"
.
format
(
epoch
,
batch_id
,
acc_top1
.
numpy
(),
acc_top5
.
numpy
(),
)
)
# check eval acc
eval_acc_top1
=
sum
(
eval_acc_top1_list
)
/
len
(
eval_acc_top1_list
)
print
(
'eval_acc_top1'
,
eval_acc_top1
)
def
test_qat
(
self
):
self
.
func_qat
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/nn/quant/quant_layers.py
浏览文件 @
01f5210e
...
...
@@ -39,6 +39,7 @@ __all__ = [
'QuantStub'
,
'QuantizedRowParallelLinear'
,
'QuantizedColumnParallelLinear'
,
'QuantizedMatmul'
,
]
_logger
=
get_logger
(
...
...
@@ -999,6 +1000,65 @@ class QuantizedRowParallelLinear(Layer):
return
output
class
QuantizedMatmul
(
Layer
):
"""
The computational logic of QuantizedMatmul is the same with Matmul.
The only difference is that its inputs are all fake quantized.
"""
def
__init__
(
self
,
layer
=
None
,
weight_bits
=
8
,
activation_bits
=
8
,
moving_rate
=
0.9
,
weight_quantize_type
=
'abs_max'
,
activation_quantize_type
=
'abs_max'
,
weight_pre_layer
=
None
,
act_pre_layer
=
None
,
weight_quant_layer
=
None
,
act_quant_layer
=
None
,
):
super
().
__init__
()
# For FakeQuant
if
act_quant_layer
is
not
None
:
self
.
_fake_quant_x
=
act_quant_layer
()
self
.
_fake_quant_y
=
act_quant_layer
()
else
:
self
.
_fake_quant_x
=
_get_fake_quant_type
(
activation_quantize_type
,
moving_rate
=
moving_rate
,
quant_bits
=
activation_bits
,
quant_on_weight
=
False
,
)
self
.
_fake_quant_y
=
_get_fake_quant_type
(
activation_quantize_type
,
moving_rate
=
moving_rate
,
quant_bits
=
activation_bits
,
quant_on_weight
=
False
,
)
self
.
_act_preprocess_x
=
(
act_pre_layer
()
if
act_pre_layer
is
not
None
else
None
)
self
.
_act_preprocess_y
=
(
act_pre_layer
()
if
act_pre_layer
is
not
None
else
None
)
def
forward
(
self
,
x
,
y
,
transpose_x
=
False
,
transpose_y
=
False
,
name
=
None
):
if
self
.
_act_preprocess_x
is
not
None
:
x
=
self
.
_act_preprocess_x
(
x
)
quant_x
=
self
.
_fake_quant_x
(
x
)
if
self
.
_act_preprocess_y
is
not
None
:
y
=
self
.
_act_preprocess_y
(
y
)
quant_y
=
self
.
_fake_quant_y
(
y
)
out
=
paddle
.
matmul
(
quant_x
,
quant_y
,
transpose_x
,
transpose_y
,
name
)
return
out
class
MAOutputScaleLayer
(
Layer
):
"""
Add MovingAverageMaxScale layer to the behind of the input layer.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录