Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
006c32f9
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
006c32f9
编写于
2月 19, 2019
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish parameter names
parameters within a Layer instance should be unique. test=develop
上级
e3dd6970
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
161 addition
and
98 deletion
+161
-98
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+23
-4
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+18
-19
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+3
-0
python/paddle/fluid/tests/unittests/test_base_layer.py
python/paddle/fluid/tests/unittests/test_base_layer.py
+22
-15
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+25
-22
python/paddle/fluid/tests/unittests/test_imperative_gan.py
python/paddle/fluid/tests/unittests/test_imperative_gan.py
+15
-15
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+12
-8
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
...n/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
+8
-2
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+35
-13
未找到文件。
python/paddle/fluid/imperative/layers.py
浏览文件 @
006c32f9
...
@@ -17,7 +17,7 @@ import contextlib
...
@@ -17,7 +17,7 @@ import contextlib
import
sys
import
sys
import
numpy
as
np
import
numpy
as
np
import
collections
import
collections
from
..
import
unique_name
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle.fluid
import
framework
from
paddle.fluid
import
framework
from
paddle.fluid.imperative
import
base
from
paddle.fluid.imperative
import
base
...
@@ -26,14 +26,33 @@ __all__ = ['Layer', 'PyLayer']
...
@@ -26,14 +26,33 @@ __all__ = ['Layer', 'PyLayer']
class
Layer
(
core
.
Layer
):
class
Layer
(
core
.
Layer
):
"""Layers composed of operators."""
"""Layers composed of operators.
def
__init__
(
self
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
name
=
None
):
Args:
name_scope: prefix name used by the layer to name parameters.
If prefix is "my_model/layer_1", parameter name in MyLayer
can be "my_model/layer_1/MyLayer/w_n", where w is the parameter
base name and n is an unique suffix auto-generated.
dtype: data type for the variables in the layer.
"""
def
__init__
(
self
,
name_scope
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
self
.
_full_name
=
unique_name
.
generate
(
name_scope
+
"/"
+
self
.
__class__
.
__name__
)
self
.
_built
=
False
self
.
_built
=
False
self
.
_dtype
=
dtype
self
.
_dtype
=
dtype
self
.
_parameters
=
collections
.
OrderedDict
()
self
.
_parameters
=
collections
.
OrderedDict
()
self
.
_sub_layers
=
collections
.
OrderedDict
()
self
.
_sub_layers
=
collections
.
OrderedDict
()
def
full_name
(
self
):
"""Full name for this layers.
Full name is composed by name_scope + "/" + MyLayer.__class__.__name__
Returns full name of this name.
"""
return
self
.
_full_name
def
parameters
(
self
,
include_sublayers
=
True
):
def
parameters
(
self
,
include_sublayers
=
True
):
"""Returns a list of Parameters from current and sub-layers.
"""Returns a list of Parameters from current and sub-layers.
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
006c32f9
...
@@ -27,6 +27,7 @@ __all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding']
...
@@ -27,6 +27,7 @@ __all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding']
class
Conv2D
(
layers
.
Layer
):
class
Conv2D
(
layers
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
num_channels
,
num_channels
,
num_filters
,
num_filters
,
filter_size
,
filter_size
,
...
@@ -38,19 +39,17 @@ class Conv2D(layers.Layer):
...
@@ -38,19 +39,17 @@ class Conv2D(layers.Layer):
act
=
None
,
act
=
None
,
param_attr
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
bias_attr
=
None
,
name
=
None
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
assert
param_attr
is
not
False
,
"param_attr should not be False here."
assert
param_attr
is
not
False
,
"param_attr should not be False here."
super
(
Conv2D
,
self
).
__init__
(
name
=
nam
e
,
dtype
=
dtype
)
super
(
Conv2D
,
self
).
__init__
(
name
_scop
e
,
dtype
=
dtype
)
# TODO(minqiyang): Move this to the top.
# TODO(minqiyang): Move this to the top.
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
self
.
full_name
()
,
param_attr
=
param_attr
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
bias_attr
=
bias_attr
,
dtype
=
dtype
,
dtype
=
dtype
,
name
=
name
,
act
=
act
)
act
=
act
)
self
.
_groups
=
groups
self
.
_groups
=
groups
...
@@ -143,6 +142,7 @@ class Conv2D(layers.Layer):
...
@@ -143,6 +142,7 @@ class Conv2D(layers.Layer):
class
Pool2D
(
layers
.
Layer
):
class
Pool2D
(
layers
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
pool_size
=-
1
,
pool_size
=-
1
,
pool_type
=
"max"
,
pool_type
=
"max"
,
pool_stride
=
1
,
pool_stride
=
1
,
...
@@ -151,7 +151,6 @@ class Pool2D(layers.Layer):
...
@@ -151,7 +151,6 @@ class Pool2D(layers.Layer):
use_cudnn
=
True
,
use_cudnn
=
True
,
ceil_mode
=
False
,
ceil_mode
=
False
,
exclusive
=
True
,
exclusive
=
True
,
name
=
None
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
if
pool_type
not
in
[
"max"
,
"avg"
]:
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
raise
ValueError
(
...
@@ -166,10 +165,10 @@ class Pool2D(layers.Layer):
...
@@ -166,10 +165,10 @@ class Pool2D(layers.Layer):
if
not
isinstance
(
use_cudnn
,
bool
):
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
raise
ValueError
(
"use_cudnn should be True or False"
)
super
(
Pool2D
,
self
).
__init__
(
name
=
nam
e
,
dtype
=
dtype
)
super
(
Pool2D
,
self
).
__init__
(
name
_scop
e
,
dtype
=
dtype
)
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
dtype
=
dtype
,
name
=
nam
e
)
self
.
_helper
=
LayerHelper
(
self
.
full_name
(),
dtype
=
dtyp
e
)
self
.
_pool_type
=
pool_type
self
.
_pool_type
=
pool_type
self
.
_pool_size
=
utils
.
convert_to_list
(
pool_size
,
2
,
'pool_size'
)
self
.
_pool_size
=
utils
.
convert_to_list
(
pool_size
,
2
,
'pool_size'
)
...
@@ -205,25 +204,24 @@ class Pool2D(layers.Layer):
...
@@ -205,25 +204,24 @@ class Pool2D(layers.Layer):
class
FC
(
layers
.
Layer
):
class
FC
(
layers
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
size
,
size
,
param_attr
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
bias_attr
=
None
,
num_flatten_dims
=
1
,
num_flatten_dims
=
1
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
act
=
None
,
act
=
None
):
name
=
None
):
super
(
FC
,
self
).
__init__
(
name_scope
)
super
(
FC
,
self
).
__init__
()
self
.
_size
=
size
self
.
_size
=
size
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_dtype
=
dtype
self
.
_dtype
=
dtype
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
self
.
_helper
=
LayerHelper
(
'FC'
,
self
.
full_name
()
,
param_attr
=
param_attr
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
bias_attr
=
bias_attr
,
act
=
act
,
act
=
act
)
name
=
name
)
def
_build_once
(
self
,
input
):
def
_build_once
(
self
,
input
):
input_shape
=
input
.
shape
input_shape
=
input
.
shape
...
@@ -282,6 +280,7 @@ class FC(layers.Layer):
...
@@ -282,6 +280,7 @@ class FC(layers.Layer):
class
BatchNorm
(
layers
.
Layer
):
class
BatchNorm
(
layers
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
num_channels
,
num_channels
,
act
=
None
,
act
=
None
,
is_test
=
False
,
is_test
=
False
,
...
@@ -292,22 +291,20 @@ class BatchNorm(layers.Layer):
...
@@ -292,22 +291,20 @@ class BatchNorm(layers.Layer):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
data_layout
=
'NCHW'
,
data_layout
=
'NCHW'
,
in_place
=
False
,
in_place
=
False
,
name
=
None
,
moving_mean_name
=
None
,
moving_mean_name
=
None
,
moving_variance_name
=
None
,
moving_variance_name
=
None
,
do_model_average_for_mean_and_var
=
False
,
do_model_average_for_mean_and_var
=
False
,
fuse_with_relu
=
False
,
fuse_with_relu
=
False
,
use_global_stats
=
False
):
use_global_stats
=
False
):
super
(
BatchNorm
,
self
).
__init__
()
super
(
BatchNorm
,
self
).
__init__
(
name_scope
)
assert
bias_attr
is
not
False
,
"bias_attr should not be False in batch_norm."
assert
bias_attr
is
not
False
,
"bias_attr should not be False in batch_norm."
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
self
.
_helper
=
LayerHelper
(
'batch_norm'
,
self
.
full_name
()
,
param_attr
=
param_attr
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
bias_attr
=
bias_attr
,
name
=
name
,
act
=
act
)
act
=
act
)
if
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
if
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
...
@@ -419,6 +416,7 @@ class Embedding(layers.Layer):
...
@@ -419,6 +416,7 @@ class Embedding(layers.Layer):
constructor.
constructor.
Args:
Args:
name_scope: See base class.
size(tuple|list): The shape of the look up table parameter. It should
size(tuple|list): The shape of the look up table parameter. It should
have two elements which indicate the size of the dictionary of
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
embeddings and the size of each embedding vector respectively.
...
@@ -446,6 +444,7 @@ class Embedding(layers.Layer):
...
@@ -446,6 +444,7 @@ class Embedding(layers.Layer):
"""
"""
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
size
,
size
,
is_sparse
=
False
,
is_sparse
=
False
,
is_distributed
=
False
,
is_distributed
=
False
,
...
@@ -453,7 +452,7 @@ class Embedding(layers.Layer):
...
@@ -453,7 +452,7 @@ class Embedding(layers.Layer):
param_attr
=
None
,
param_attr
=
None
,
dtype
=
'float32'
):
dtype
=
'float32'
):
super
(
Embedding
,
self
).
__init__
()
super
(
Embedding
,
self
).
__init__
(
name_scope
)
self
.
_size
=
size
self
.
_size
=
size
self
.
_is_sparse
=
is_sparse
self
.
_is_sparse
=
is_sparse
self
.
_is_distributed
=
is_distributed
self
.
_is_distributed
=
is_distributed
...
@@ -468,7 +467,7 @@ class Embedding(layers.Layer):
...
@@ -468,7 +467,7 @@ class Embedding(layers.Layer):
assert
self
.
_is_sparse
is
True
and
self
.
_is_distributed
is
False
assert
self
.
_is_sparse
is
True
and
self
.
_is_distributed
is
False
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
'embedding'
,
param_attr
=
param_attr
)
self
.
_helper
=
LayerHelper
(
self
.
full_name
()
,
param_attr
=
param_attr
)
self
.
_w
=
self
.
_helper
.
create_parameter
(
self
.
_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_param_attr
,
attr
=
self
.
_param_attr
,
shape
=
self
.
_size
,
shape
=
self
.
_size
,
...
...
python/paddle/fluid/layer_helper.py
浏览文件 @
006c32f9
...
@@ -34,6 +34,9 @@ class LayerHelper(object):
...
@@ -34,6 +34,9 @@ class LayerHelper(object):
self
.
kwargs
=
kwargs
self
.
kwargs
=
kwargs
self
.
layer_type
=
layer_type
self
.
layer_type
=
layer_type
name
=
self
.
kwargs
.
get
(
'name'
,
None
)
name
=
self
.
kwargs
.
get
(
'name'
,
None
)
# TODO(panyx0718, minqiyang): imperative mode
# can not use both `layer_type` and `name`. Deprecate LayerHelper
# and write a Helper for imperative mode.
if
name
is
None
:
if
name
is
None
:
self
.
kwargs
[
'name'
]
=
unique_name
.
generate
(
self
.
layer_type
)
self
.
kwargs
[
'name'
]
=
unique_name
.
generate
(
self
.
layer_type
)
...
...
python/paddle/fluid/tests/unittests/test_base_layer.py
浏览文件 @
006c32f9
...
@@ -20,10 +20,10 @@ from paddle.fluid.layer_helper import LayerHelper
...
@@ -20,10 +20,10 @@ from paddle.fluid.layer_helper import LayerHelper
class
L1
(
fluid
.
imperative
.
Layer
):
class
L1
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
prefix
):
super
(
L1
,
self
).
__init__
()
super
(
L1
,
self
).
__init__
(
prefix
)
self
.
_helper
=
LayerHelper
(
self
.
_helper
=
LayerHelper
(
'MyLayer'
,
self
.
full_name
()
,
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
...
@@ -43,20 +43,20 @@ class L1(fluid.imperative.Layer):
...
@@ -43,20 +43,20 @@ class L1(fluid.imperative.Layer):
class
L2
(
fluid
.
imperative
.
Layer
):
class
L2
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
prefix
):
super
(
L2
,
self
).
__init__
()
super
(
L2
,
self
).
__init__
(
prefix
)
self
.
layer1
=
L1
()
self
.
layer1
=
L1
(
self
.
full_name
()
)
self
.
layer2
=
L1
()
self
.
layer2
=
L1
(
self
.
full_name
()
)
def
forward
(
self
):
def
forward
(
self
):
return
self
.
layer1
()
+
self
.
layer2
()
return
self
.
layer1
()
+
self
.
layer2
()
class
L3
(
fluid
.
imperative
.
Layer
):
class
L3
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
prefix
):
super
(
L3
,
self
).
__init__
()
super
(
L3
,
self
).
__init__
(
prefix
)
self
.
layer1
=
L2
()
self
.
layer1
=
L2
(
self
.
full_name
()
)
self
.
layer2
=
L2
()
self
.
layer2
=
L2
(
self
.
full_name
()
)
def
forward
(
self
):
def
forward
(
self
):
return
self
.
layer1
()
+
self
.
layer2
()
return
self
.
layer1
()
+
self
.
layer2
()
...
@@ -65,16 +65,23 @@ class L3(fluid.imperative.Layer):
...
@@ -65,16 +65,23 @@ class L3(fluid.imperative.Layer):
class
TestBaseLayer
(
unittest
.
TestCase
):
class
TestBaseLayer
(
unittest
.
TestCase
):
def
test_one_level
(
self
):
def
test_one_level
(
self
):
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
l
=
L1
()
l
=
L1
(
'test_one_level'
)
ret
=
l
()
ret
=
l
()
self
.
assertEqual
(
l
.
w1
.
name
,
"
MyLayer
_0.w_0"
)
self
.
assertEqual
(
l
.
w1
.
name
,
"
test_one_level/L1_0
_0.w_0"
)
self
.
assertEqual
(
l
.
w2
.
name
,
"
MyLayer
_0.w_1"
)
self
.
assertEqual
(
l
.
w2
.
name
,
"
test_one_level/L1_0
_0.w_1"
)
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.2
*
np
.
ones
([
2
,
2
])))
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.2
*
np
.
ones
([
2
,
2
])))
def
test_three_level
(
self
):
def
test_three_level
(
self
):
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
l
=
L3
()
l
=
L3
(
'test_three_level'
)
names
=
[
p
.
name
for
p
in
l
.
parameters
()]
ret
=
l
()
ret
=
l
()
self
.
assertEqual
(
names
[
0
],
"test_three_level/L3_0/L2_0/L1_0_0.w_0"
)
self
.
assertEqual
(
names
[
1
],
"test_three_level/L3_0/L2_0/L1_0_0.w_1"
)
self
.
assertEqual
(
names
[
2
],
"test_three_level/L3_0/L2_0/L1_1_0.w_0"
)
self
.
assertEqual
(
names
[
3
],
"test_three_level/L3_0/L2_0/L1_1_0.w_1"
)
self
.
assertEqual
(
names
[
4
],
"test_three_level/L3_0/L2_1/L1_0_0.w_0"
)
self
.
assertEqual
(
names
[
5
],
"test_three_level/L3_0/L2_1/L1_0_0.w_1"
)
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.8
*
np
.
ones
([
2
,
2
])))
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.8
*
np
.
ones
([
2
,
2
])))
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
006c32f9
...
@@ -15,7 +15,6 @@
...
@@ -15,7 +15,6 @@
import
contextlib
import
contextlib
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
import
sys
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid
import
core
...
@@ -24,8 +23,8 @@ from test_imperative_base import new_program_scope
...
@@ -24,8 +23,8 @@ from test_imperative_base import new_program_scope
class
MyLayer
(
fluid
.
imperative
.
Layer
):
class
MyLayer
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
name_scope
):
super
(
MyLayer
,
self
).
__init__
()
super
(
MyLayer
,
self
).
__init__
(
name_scope
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
fluid
.
layers
.
relu
(
inputs
)
x
=
fluid
.
layers
.
relu
(
inputs
)
...
@@ -50,12 +49,14 @@ class MyPyLayer(fluid.imperative.PyLayer):
...
@@ -50,12 +49,14 @@ class MyPyLayer(fluid.imperative.PyLayer):
class
MLP
(
fluid
.
imperative
.
Layer
):
class
MLP
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
name_scope
):
super
(
MLP
,
self
).
__init__
()
super
(
MLP
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
3
,
self
.
_fc1
=
FC
(
self
.
full_name
(),
3
,
fluid
.
ParamAttr
(
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
self
.
_fc2
=
FC
(
4
,
self
.
_fc2
=
FC
(
self
.
full_name
(),
4
,
fluid
.
ParamAttr
(
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
...
@@ -67,8 +68,9 @@ class MLP(fluid.imperative.Layer):
...
@@ -67,8 +68,9 @@ class MLP(fluid.imperative.Layer):
class
SimpleRNNCell
(
fluid
.
imperative
.
Layer
):
class
SimpleRNNCell
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
step_input_size
,
hidden_size
,
output_size
,
param_attr
):
def
__init__
(
self
,
name_scope
,
step_input_size
,
hidden_size
,
output_size
,
super
(
SimpleRNNCell
,
self
).
__init__
()
param_attr
):
super
(
SimpleRNNCell
,
self
).
__init__
(
name_scope
)
self
.
step_input_size
=
step_input_size
self
.
step_input_size
=
step_input_size
self
.
hidden_size
=
hidden_size
self
.
hidden_size
=
hidden_size
self
.
output_size
=
output_size
self
.
output_size
=
output_size
...
@@ -158,10 +160,11 @@ class SimpleRNNCell(fluid.imperative.Layer):
...
@@ -158,10 +160,11 @@ class SimpleRNNCell(fluid.imperative.Layer):
class
SimpleRNN
(
fluid
.
imperative
.
Layer
):
class
SimpleRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
name_scope
):
super
(
SimpleRNN
,
self
).
__init__
()
super
(
SimpleRNN
,
self
).
__init__
(
name_scope
)
self
.
seq_len
=
4
self
.
seq_len
=
4
self
.
_cell
=
SimpleRNNCell
(
self
.
_cell
=
SimpleRNNCell
(
self
.
full_name
(),
3
,
3
,
3
,
3
,
3
,
3
,
...
@@ -205,7 +208,7 @@ class TestImperative(unittest.TestCase):
...
@@ -205,7 +208,7 @@ class TestImperative(unittest.TestCase):
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
cl
=
core
.
Layer
()
cl
=
core
.
Layer
()
cl
.
forward
([])
cl
.
forward
([])
l
=
fluid
.
imperative
.
Layer
()
l
=
fluid
.
imperative
.
Layer
(
"l"
)
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
def
test_pylayer_func_id
(
self
):
def
test_pylayer_func_id
(
self
):
...
@@ -281,7 +284,7 @@ class TestImperative(unittest.TestCase):
...
@@ -281,7 +284,7 @@ class TestImperative(unittest.TestCase):
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
l
=
MyLayer
()
l
=
MyLayer
(
"my_layer"
)
x
=
l
(
var_inp
)[
0
]
x
=
l
(
var_inp
)[
0
]
self
.
assertIsNotNone
(
x
)
self
.
assertIsNotNone
(
x
)
dy_out
=
x
.
_numpy
()
dy_out
=
x
.
_numpy
()
...
@@ -291,7 +294,7 @@ class TestImperative(unittest.TestCase):
...
@@ -291,7 +294,7 @@ class TestImperative(unittest.TestCase):
with
new_program_scope
():
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
3
],
append_batch_size
=
False
)
name
=
"inp"
,
shape
=
[
3
],
append_batch_size
=
False
)
l
=
MyLayer
()
l
=
MyLayer
(
"my_layer"
)
x
=
l
(
inp
)[
0
]
x
=
l
(
inp
)[
0
]
param_grads
=
fluid
.
backward
.
append_backward
(
param_grads
=
fluid
.
backward
.
append_backward
(
x
,
parameter_list
=
[
l
.
_x_for_debug
.
name
])[
0
]
x
,
parameter_list
=
[
l
.
_x_for_debug
.
name
])[
0
]
...
@@ -309,7 +312,7 @@ class TestImperative(unittest.TestCase):
...
@@ -309,7 +312,7 @@ class TestImperative(unittest.TestCase):
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
mlp
=
MLP
()
mlp
=
MLP
(
"mlp"
)
out
=
mlp
(
var_inp
)
out
=
mlp
(
var_inp
)
dy_out
=
out
.
_numpy
()
dy_out
=
out
.
_numpy
()
out
.
_backward
()
out
.
_backward
()
...
@@ -318,7 +321,7 @@ class TestImperative(unittest.TestCase):
...
@@ -318,7 +321,7 @@ class TestImperative(unittest.TestCase):
with
new_program_scope
():
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
mlp
=
MLP
()
mlp
=
MLP
(
"mlp"
)
out
=
mlp
(
inp
)
out
=
mlp
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
param_grads
=
fluid
.
backward
.
append_backward
(
out
,
parameter_list
=
[
mlp
.
_fc1
.
_w
.
name
])[
0
]
out
,
parameter_list
=
[
mlp
.
_fc1
.
_w
.
name
])[
0
]
...
@@ -334,10 +337,10 @@ class TestImperative(unittest.TestCase):
...
@@ -334,10 +337,10 @@ class TestImperative(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
params
=
mlp
.
parameters
(
True
)
params
=
mlp
.
parameters
(
True
)
self
.
assertEqual
(
"
FC
_0.w_0"
,
params
[
0
].
name
)
self
.
assertEqual
(
"
mlp/MLP_0/FC_0
_0.w_0"
,
params
[
0
].
name
)
self
.
assertEqual
(
"
FC
_0.b_0"
,
params
[
1
].
name
)
self
.
assertEqual
(
"
mlp/MLP_0/FC_0
_0.b_0"
,
params
[
1
].
name
)
self
.
assertEqual
(
"
FC_1
.w_0"
,
params
[
2
].
name
)
self
.
assertEqual
(
"
mlp/MLP_0/FC_1_0
.w_0"
,
params
[
2
].
name
)
self
.
assertEqual
(
"
FC_1
.b_0"
,
params
[
3
].
name
)
self
.
assertEqual
(
"
mlp/MLP_0/FC_1_0
.b_0"
,
params
[
3
].
name
)
self
.
assertEqual
(
len
(
params
),
4
)
self
.
assertEqual
(
len
(
params
),
4
)
sublayers
=
mlp
.
sublayers
(
True
)
sublayers
=
mlp
.
sublayers
(
True
)
...
@@ -353,7 +356,7 @@ class TestImperative(unittest.TestCase):
...
@@ -353,7 +356,7 @@ class TestImperative(unittest.TestCase):
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
layers
.
reshape
(
var_inp
,
shape
=
[
1
,
4
,
3
])
var_inp
=
fluid
.
layers
.
reshape
(
var_inp
,
shape
=
[
1
,
4
,
3
])
simple_rnn
=
SimpleRNN
()
simple_rnn
=
SimpleRNN
(
"simple_rnn"
)
outs
,
pre_hiddens
=
simple_rnn
.
forward
(
var_inp
)
outs
,
pre_hiddens
=
simple_rnn
.
forward
(
var_inp
)
dy_out
=
outs
[
3
].
_numpy
()
dy_out
=
outs
[
3
].
_numpy
()
outs
[
3
].
_backward
()
outs
[
3
].
_backward
()
...
@@ -364,7 +367,7 @@ class TestImperative(unittest.TestCase):
...
@@ -364,7 +367,7 @@ class TestImperative(unittest.TestCase):
with
new_program_scope
():
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
1
,
4
,
3
],
append_batch_size
=
False
)
name
=
"inp"
,
shape
=
[
1
,
4
,
3
],
append_batch_size
=
False
)
simple_rnn
=
SimpleRNN
()
simple_rnn
=
SimpleRNN
(
"simple_rnn"
)
outs
,
pre_hiddens
=
simple_rnn
(
inp
)
outs
,
pre_hiddens
=
simple_rnn
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
outs
[
3
])
param_grads
=
fluid
.
backward
.
append_backward
(
outs
[
3
])
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
...
...
python/paddle/fluid/tests/unittests/test_imperative_gan.py
浏览文件 @
006c32f9
...
@@ -28,10 +28,10 @@ from paddle.fluid.imperative.base import to_variable
...
@@ -28,10 +28,10 @@ from paddle.fluid.imperative.base import to_variable
class
Discriminator
(
fluid
.
imperative
.
Layer
):
class
Discriminator
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
name_scope
):
super
(
Discriminator
,
self
).
__init__
()
super
(
Discriminator
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
s
ize
=
32
,
act
=
'elu'
,
name
=
"d_fc1"
)
self
.
_fc1
=
FC
(
s
elf
.
full_name
(),
size
=
32
,
act
=
'elu'
)
self
.
_fc2
=
FC
(
s
ize
=
1
,
name
=
"d_fc2"
)
self
.
_fc2
=
FC
(
s
elf
.
full_name
(),
size
=
1
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc1
(
inputs
)
...
@@ -39,11 +39,11 @@ class Discriminator(fluid.imperative.Layer):
...
@@ -39,11 +39,11 @@ class Discriminator(fluid.imperative.Layer):
class
Generator
(
fluid
.
imperative
.
Layer
):
class
Generator
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
name_scope
):
super
(
Generator
,
self
).
__init__
()
super
(
Generator
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
s
ize
=
64
,
act
=
'elu'
,
name
=
"g_fc1"
)
self
.
_fc1
=
FC
(
s
elf
.
full_name
(),
size
=
64
,
act
=
'elu'
)
self
.
_fc2
=
FC
(
s
ize
=
64
,
act
=
'elu'
,
name
=
"g_fc2"
)
self
.
_fc2
=
FC
(
s
elf
.
full_name
(),
size
=
64
,
act
=
'elu'
)
self
.
_fc3
=
FC
(
s
ize
=
1
,
name
=
"g_fc3"
)
self
.
_fc3
=
FC
(
s
elf
.
full_name
(),
size
=
1
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc1
(
inputs
)
...
@@ -65,8 +65,8 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -65,8 +65,8 @@ class TestImperativeMnist(unittest.TestCase):
scope
=
fluid
.
core
.
Scope
()
scope
=
fluid
.
core
.
Scope
()
with
new_program_scope
(
with
new_program_scope
(
main
=
discriminate_p
,
startup
=
startup
,
scope
=
scope
):
main
=
discriminate_p
,
startup
=
startup
,
scope
=
scope
):
discriminator
=
Discriminator
()
discriminator
=
Discriminator
(
"d"
)
generator
=
Generator
()
generator
=
Generator
(
"g"
)
img
=
fluid
.
layers
.
data
(
img
=
fluid
.
layers
.
data
(
name
=
"img"
,
shape
=
[
2
,
1
],
append_batch_size
=
False
)
name
=
"img"
,
shape
=
[
2
,
1
],
append_batch_size
=
False
)
...
@@ -93,8 +93,8 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -93,8 +93,8 @@ class TestImperativeMnist(unittest.TestCase):
sgd
.
minimize
(
d_loss
)
sgd
.
minimize
(
d_loss
)
with
new_program_scope
(
main
=
generate_p
,
startup
=
startup
,
scope
=
scope
):
with
new_program_scope
(
main
=
generate_p
,
startup
=
startup
,
scope
=
scope
):
discriminator
=
Discriminator
()
discriminator
=
Discriminator
(
"d"
)
generator
=
Generator
()
generator
=
Generator
(
"g"
)
noise
=
fluid
.
layers
.
data
(
noise
=
fluid
.
layers
.
data
(
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
...
@@ -134,8 +134,8 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -134,8 +134,8 @@ class TestImperativeMnist(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
discriminator
=
Discriminator
()
discriminator
=
Discriminator
(
"d"
)
generator
=
Generator
()
generator
=
Generator
(
"g"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
d_real
=
discriminator
(
to_variable
(
np
.
ones
([
2
,
1
],
np
.
float32
)))
d_real
=
discriminator
(
to_variable
(
np
.
ones
([
2
,
1
],
np
.
float32
)))
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
006c32f9
...
@@ -28,6 +28,7 @@ from test_imperative_base import new_program_scope
...
@@ -28,6 +28,7 @@ from test_imperative_base import new_program_scope
class
SimpleImgConvPool
(
fluid
.
imperative
.
Layer
):
class
SimpleImgConvPool
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
num_channels
,
num_channels
,
num_filters
,
num_filters
,
filter_size
,
filter_size
,
...
@@ -44,9 +45,10 @@ class SimpleImgConvPool(fluid.imperative.Layer):
...
@@ -44,9 +45,10 @@ class SimpleImgConvPool(fluid.imperative.Layer):
use_cudnn
=
False
,
use_cudnn
=
False
,
param_attr
=
None
,
param_attr
=
None
,
bias_attr
=
None
):
bias_attr
=
None
):
super
(
SimpleImgConvPool
,
self
).
__init__
()
super
(
SimpleImgConvPool
,
self
).
__init__
(
name_scope
)
self
.
_conv2d
=
Conv2D
(
self
.
_conv2d
=
Conv2D
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
...
@@ -59,6 +61,7 @@ class SimpleImgConvPool(fluid.imperative.Layer):
...
@@ -59,6 +61,7 @@ class SimpleImgConvPool(fluid.imperative.Layer):
use_cudnn
=
use_cudnn
)
use_cudnn
=
use_cudnn
)
self
.
_pool2d
=
Pool2D
(
self
.
_pool2d
=
Pool2D
(
self
.
full_name
(),
pool_size
=
pool_size
,
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_stride
=
pool_stride
,
...
@@ -73,19 +76,20 @@ class SimpleImgConvPool(fluid.imperative.Layer):
...
@@ -73,19 +76,20 @@ class SimpleImgConvPool(fluid.imperative.Layer):
class
MNIST
(
fluid
.
imperative
.
Layer
):
class
MNIST
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
param_attr
=
None
,
bias_attr
=
None
):
def
__init__
(
self
,
name_scope
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MNIST
,
self
).
__init__
()
super
(
MNIST
,
self
).
__init__
(
name_scope
)
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
full_name
(),
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
full_name
(),
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
4
*
4
pool_2_shape
=
50
*
4
*
4
SIZE
=
10
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
FC
(
10
,
self
.
_fc
=
FC
(
self
.
full_name
(),
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)),
loc
=
0.0
,
scale
=
scale
)),
...
@@ -106,7 +110,7 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -106,7 +110,7 @@ class TestImperativeMnist(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
mnist
=
MNIST
()
mnist
=
MNIST
(
"mnist"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
...
@@ -150,7 +154,7 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -150,7 +154,7 @@ class TestImperativeMnist(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
mnist
=
MNIST
()
mnist
=
MNIST
(
"mnist"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
浏览文件 @
006c32f9
...
@@ -28,12 +28,13 @@ from paddle.fluid.backward import append_backward
...
@@ -28,12 +28,13 @@ from paddle.fluid.backward import append_backward
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
hidden_size
,
hidden_size
,
num_steps
,
num_steps
,
num_layers
=
2
,
num_layers
=
2
,
init_scale
=
0.1
,
init_scale
=
0.1
,
dropout
=
None
):
dropout
=
None
):
super
(
SimpleLSTMRNN
,
self
).
__init__
()
super
(
SimpleLSTMRNN
,
self
).
__init__
(
name_scope
)
self
.
_hidden_size
=
hidden_size
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_init_scale
=
init_scale
...
@@ -130,13 +131,14 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
...
@@ -130,13 +131,14 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
class
PtbModel
(
fluid
.
imperative
.
Layer
):
class
PtbModel
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
hidden_size
,
hidden_size
,
vocab_size
,
vocab_size
,
num_layers
=
2
,
num_layers
=
2
,
num_steps
=
20
,
num_steps
=
20
,
init_scale
=
0.1
,
init_scale
=
0.1
,
dropout
=
None
):
dropout
=
None
):
super
(
PtbModel
,
self
).
__init__
()
super
(
PtbModel
,
self
).
__init__
(
name_scope
)
self
.
hidden_size
=
hidden_size
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
vocab_size
=
vocab_size
self
.
init_scale
=
init_scale
self
.
init_scale
=
init_scale
...
@@ -146,12 +148,14 @@ class PtbModel(fluid.imperative.Layer):
...
@@ -146,12 +148,14 @@ class PtbModel(fluid.imperative.Layer):
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
'PtbModel'
,
act
=
"tanh"
)
self
.
_helper
=
LayerHelper
(
'PtbModel'
,
act
=
"tanh"
)
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
self
.
full_name
(),
hidden_size
,
hidden_size
,
num_steps
,
num_steps
,
num_layers
=
num_layers
,
num_layers
=
num_layers
,
init_scale
=
init_scale
,
init_scale
=
init_scale
,
dropout
=
dropout
)
dropout
=
dropout
)
self
.
embedding
=
Embedding
(
self
.
embedding
=
Embedding
(
self
.
full_name
(),
size
=
[
vocab_size
,
hidden_size
],
size
=
[
vocab_size
,
hidden_size
],
dtype
=
'float32'
,
dtype
=
'float32'
,
is_sparse
=
False
,
is_sparse
=
False
,
...
@@ -226,6 +230,7 @@ class TestImperativePtbRnn(unittest.TestCase):
...
@@ -226,6 +230,7 @@ class TestImperativePtbRnn(unittest.TestCase):
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
# TODO: marsyang1993 Change seed to
ptb_model
=
PtbModel
(
ptb_model
=
PtbModel
(
"ptb_model"
,
hidden_size
=
hidden_size
,
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_layers
=
num_layers
,
...
@@ -265,6 +270,7 @@ class TestImperativePtbRnn(unittest.TestCase):
...
@@ -265,6 +270,7 @@ class TestImperativePtbRnn(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
ptb_model
=
PtbModel
(
ptb_model
=
PtbModel
(
"ptb_model"
,
hidden_size
=
hidden_size
,
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_layers
=
num_layers
,
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
006c32f9
...
@@ -70,15 +70,17 @@ def optimizer_setting(params):
...
@@ -70,15 +70,17 @@ def optimizer_setting(params):
class
ConvBNLayer
(
fluid
.
imperative
.
Layer
):
class
ConvBNLayer
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
num_channels
,
num_channels
,
num_filters
,
num_filters
,
filter_size
,
filter_size
,
stride
=
1
,
stride
=
1
,
groups
=
1
,
groups
=
1
,
act
=
None
):
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
super
(
ConvBNLayer
,
self
).
__init__
(
name_scope
)
self
.
_conv
=
Conv2D
(
self
.
_conv
=
Conv2D
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
...
@@ -88,7 +90,7 @@ class ConvBNLayer(fluid.imperative.Layer):
...
@@ -88,7 +90,7 @@ class ConvBNLayer(fluid.imperative.Layer):
act
=
None
,
act
=
None
,
bias_attr
=
None
)
bias_attr
=
None
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
self
.
_batch_norm
=
BatchNorm
(
self
.
full_name
(),
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_conv
(
inputs
)
...
@@ -98,21 +100,29 @@ class ConvBNLayer(fluid.imperative.Layer):
...
@@ -98,21 +100,29 @@ class ConvBNLayer(fluid.imperative.Layer):
class
BottleneckBlock
(
fluid
.
imperative
.
Layer
):
class
BottleneckBlock
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
):
def
__init__
(
self
,
super
(
BottleneckBlock
,
self
).
__init__
()
name_scope
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
(
name_scope
)
self
.
conv0
=
ConvBNLayer
(
self
.
conv0
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
1
,
filter_size
=
1
,
act
=
'relu'
)
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
self
.
conv1
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
filter_size
=
3
,
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
)
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
self
.
conv2
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
filter_size
=
1
,
...
@@ -120,6 +130,7 @@ class BottleneckBlock(fluid.imperative.Layer):
...
@@ -120,6 +130,7 @@ class BottleneckBlock(fluid.imperative.Layer):
if
not
shortcut
:
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
self
.
short
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
filter_size
=
1
,
...
@@ -141,13 +152,13 @@ class BottleneckBlock(fluid.imperative.Layer):
...
@@ -141,13 +152,13 @@ class BottleneckBlock(fluid.imperative.Layer):
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
'elementwise_add_activation'
,
act
=
'relu'
)
layer_helper
=
LayerHelper
(
self
.
full_name
()
,
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
return
layer_helper
.
append_activation
(
y
)
class
ResNet
(
fluid
.
imperative
.
Layer
):
class
ResNet
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
102
):
def
__init__
(
self
,
name_scope
,
layers
=
50
,
class_dim
=
102
):
super
(
ResNet
,
self
).
__init__
()
super
(
ResNet
,
self
).
__init__
(
name_scope
)
self
.
layers
=
layers
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
supported_layers
=
[
50
,
101
,
152
]
...
@@ -163,9 +174,18 @@ class ResNet(fluid.imperative.Layer):
...
@@ -163,9 +174,18 @@ class ResNet(fluid.imperative.Layer):
num_filters
=
[
64
,
128
,
256
,
512
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
full_name
(),
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool2d_max
=
Pool2D
(
self
.
pool2d_max
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
full_name
(),
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
self
.
bottleneck_block_list
=
[]
num_channels
=
64
num_channels
=
64
...
@@ -175,6 +195,7 @@ class ResNet(fluid.imperative.Layer):
...
@@ -175,6 +195,7 @@ class ResNet(fluid.imperative.Layer):
bottleneck_block
=
self
.
add_sublayer
(
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
BottleneckBlock
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
[
block
],
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
...
@@ -184,12 +205,13 @@ class ResNet(fluid.imperative.Layer):
...
@@ -184,12 +205,13 @@ class ResNet(fluid.imperative.Layer):
shortcut
=
True
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
full_name
(),
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
import
math
import
math
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
FC
(
size
=
class_dim
,
self
.
out
=
FC
(
self
.
full_name
(),
size
=
class_dim
,
act
=
'softmax'
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
...
@@ -214,7 +236,7 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -214,7 +236,7 @@ class TestImperativeResnet(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
resnet
=
ResNet
()
resnet
=
ResNet
(
"resnet"
)
optimizer
=
optimizer_setting
(
train_parameters
)
optimizer
=
optimizer_setting
(
train_parameters
)
np
.
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
import
random
import
random
...
@@ -275,7 +297,7 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -275,7 +297,7 @@ class TestImperativeResnet(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
resnet
=
ResNet
()
resnet
=
ResNet
(
"resnet"
)
optimizer
=
optimizer_setting
(
train_parameters
)
optimizer
=
optimizer_setting
(
train_parameters
)
np
.
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录