Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0036316e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0036316e
编写于
2月 09, 2023
作者:
Z
zhangyikun02
提交者:
GitHub
2月 09, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add logical_and, logical_or and logical_xor for xpu (#50228)
上级
b2bb7ec9
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
143 addition
and
0 deletion
+143
-0
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+3
-0
paddle/phi/kernels/xpu/logical_kernel.cc
paddle/phi/kernels/xpu/logical_kernel.cc
+140
-0
未找到文件。
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
0036316e
...
@@ -360,7 +360,10 @@ XPUOpMap& get_kl2_ops() {
...
@@ -360,7 +360,10 @@ XPUOpMap& get_kl2_ops() {
{
"log_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"log_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"log_softmax"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"log_softmax"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"log_softmax_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"log_softmax_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"logical_and"
,
XPUKernelSet
({
phi
::
DataType
::
BOOL
})},
{
"logical_not"
,
XPUKernelSet
({
phi
::
DataType
::
BOOL
})},
{
"logical_not"
,
XPUKernelSet
({
phi
::
DataType
::
BOOL
})},
{
"logical_or"
,
XPUKernelSet
({
phi
::
DataType
::
BOOL
})},
{
"logical_xor"
,
XPUKernelSet
({
phi
::
DataType
::
BOOL
})},
{
"lookup_table_v2_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"lookup_table_v2_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"lookup_table_v2"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"lookup_table_v2"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"masked_select"
,
{
"masked_select"
,
...
...
paddle/phi/kernels/xpu/logical_kernel.cc
浏览文件 @
0036316e
...
@@ -28,6 +28,146 @@ void LogicalNotKernel(const Context& ctx,
...
@@ -28,6 +28,146 @@ void LogicalNotKernel(const Context& ctx,
xpu
::
logical_not
(
ctx
.
x_context
(),
x
.
data
<
T
>
(),
out
->
data
<
T
>
(),
x
.
numel
());
xpu
::
logical_not
(
ctx
.
x_context
(),
x
.
data
<
T
>
(),
out
->
data
<
T
>
(),
x
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"logical_not"
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"logical_not"
);
}
}
template
<
typename
T
,
typename
XPUType
>
void
LogicalBinaryKernel
(
const
XPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
,
std
::
function
<
int
(
xpu
::
Context
*
,
const
XPUType
*
,
const
XPUType
*
,
XPUType
*
,
int64_t
)
>
func
,
std
::
string
funcname
=
"unknown"
)
{
dev_ctx
.
template
Alloc
<
T
>(
out
);
int
r
=
xpu
::
SUCCESS
;
const
auto
*
x_data
=
x
.
data
<
T
>
();
const
auto
*
y_data
=
y
.
data
<
T
>
();
auto
*
out_data
=
out
->
data
<
T
>
();
if
(
x
.
numel
()
==
out
->
numel
()
&&
y
.
numel
()
==
out
->
numel
())
{
r
=
func
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
const
XPUType
*>
(
y_data
),
reinterpret_cast
<
XPUType
*>
(
out_data
),
out
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
funcname
);
return
;
}
// x or y need to do broadcast
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
int
axis
=
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
());
std
::
vector
<
int64_t
>
x_dims_vec
(
max_dim
,
1
);
std
::
vector
<
int64_t
>
y_dims_vec
(
max_dim
,
1
);
if
(
x_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
x_dims_vec
[
i
]
=
x_dims
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
x_dims_vec
[
i
+
axis
]
=
x_dims
[
i
];
}
}
if
(
y_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
y_dims_vec
[
i
]
=
y_dims
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
y_dims_vec
[
i
+
axis
]
=
y_dims
[
i
];
}
}
if
(
x_dims_vec
.
size
()
==
0
)
{
x_dims_vec
=
std
::
vector
<
int64_t
>
({
1
});
}
if
(
y_dims_vec
.
size
()
==
0
)
{
y_dims_vec
=
std
::
vector
<
int64_t
>
({
1
});
}
bool
is_x_need_broadcast
=
false
;
bool
is_y_need_broadcast
=
false
;
auto
out_vec
=
phi
::
vectorize
(
out
->
dims
());
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
if
(
x_dims_vec
[
i
]
!=
out_vec
[
i
])
{
is_x_need_broadcast
=
true
;
break
;
}
}
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
if
(
y_dims_vec
[
i
]
!=
out_vec
[
i
])
{
is_y_need_broadcast
=
true
;
break
;
}
}
auto
xpu_context
=
dev_ctx
.
x_context
();
xpu
::
ctx_guard
RAII_GUARD
(
xpu_context
);
if
(
is_x_need_broadcast
)
{
T
*
x_data_broadcast
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
out
->
numel
());
r
=
xpu
::
broadcast
<
XPUType
>
(
xpu_context
,
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
XPUType
*>
(
x_data_broadcast
),
x_dims_vec
,
out_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"broadcast"
);
x_data
=
x_data_broadcast
;
}
if
(
is_y_need_broadcast
)
{
T
*
y_data_broadcast
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
out
->
numel
());
r
=
xpu
::
broadcast
<
XPUType
>
(
xpu_context
,
reinterpret_cast
<
const
XPUType
*>
(
y_data
),
reinterpret_cast
<
XPUType
*>
(
y_data_broadcast
),
y_dims_vec
,
out_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"broadcast"
);
y_data
=
y_data_broadcast
;
}
r
=
func
(
xpu_context
,
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
const
XPUType
*>
(
y_data
),
reinterpret_cast
<
XPUType
*>
(
out_data
),
out
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
funcname
);
}
template
<
typename
T
,
typename
Context
>
void
LogicalAndKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
return
LogicalBinaryKernel
<
T
,
XPUType
>
(
dev_ctx
,
x
,
y
,
out
,
xpu
::
logical_and
<
XPUType
>
,
"logical_and"
);
}
template
<
typename
T
,
typename
Context
>
void
LogicalOrKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
return
LogicalBinaryKernel
<
T
,
XPUType
>
(
dev_ctx
,
x
,
y
,
out
,
xpu
::
logical_or
<
XPUType
>
,
"logical_or"
);
}
template
<
typename
T
,
typename
Context
>
void
LogicalXorKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
return
LogicalBinaryKernel
<
T
,
XPUType
>
(
dev_ctx
,
x
,
y
,
out
,
xpu
::
logical_xor
<
XPUType
>
,
"logical_xor"
);
}
}
// namespace phi
}
// namespace phi
PD_REGISTER_KERNEL
(
logical_not
,
XPU
,
ALL_LAYOUT
,
phi
::
LogicalNotKernel
,
bool
)
{}
PD_REGISTER_KERNEL
(
logical_not
,
XPU
,
ALL_LAYOUT
,
phi
::
LogicalNotKernel
,
bool
)
{}
PD_REGISTER_KERNEL
(
logical_and
,
XPU
,
ALL_LAYOUT
,
phi
::
LogicalAndKernel
,
bool
)
{}
PD_REGISTER_KERNEL
(
logical_or
,
XPU
,
ALL_LAYOUT
,
phi
::
LogicalOrKernel
,
bool
)
{}
PD_REGISTER_KERNEL
(
logical_xor
,
XPU
,
ALL_LAYOUT
,
phi
::
LogicalXorKernel
,
bool
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录