framework.py 18.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
import paddle.v2.framework.core as core
import paddle.v2.framework.proto.framework_pb2 as framework_pb2
import collections
import numpy as np
import copy

__all__ = ['Block', 'Variable', 'Program', 'Operator']


def unique_name(prefix):
    uid = core.unique_integer(prefix)  # unique during whole process.
    return "_".join([prefix, str(uid)])


def _debug_string_(proto):
    error_fields = list()
    if not proto.IsInitialized(error_fields):
        raise ValueError("{0} are not initialized\nThe message is {1}".format(
            error_fields, proto))
    return proto.__str__()


class Variable(object):
    def __init__(self,
                 block,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
                 persistable=None,
                 stop_gradient=False,
                 **kwargs):
        self.block = block

        if name is None:
            name = Variable._unique_var_name_()
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
            self.desc = self.block.desc.var(name)
            is_new_var = True

        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

        if shape is not None:
            if is_new_var:
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if not isinstance(dtype, core.DataType):
                dtype = Variable._convert_np_dtype_to_dtype_(dtype)
            if is_new_var:
                self.desc.set_data_type(dtype)
            else:
                old_dtype = self.data_type
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

        self.block.vars[name] = self
        self.op = None
        self.stop_gradient = stop_gradient

    def __str__(self):
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
        return _debug_string_(proto)

    __repr__ = __str__

    @property
    def persistable(self):
        return self.desc.persistable()

    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

    @property
    def name(self):
        return self.desc.name()

    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
        return tuple(self.desc.shape())

    @property
    def data_type(self):
        return self.desc.data_type()

    @property
    def lod_level(self):
        return self.desc.lod_level()

    @property
    def type(self):
        return self.desc.type()

    @staticmethod
    def _unique_var_name_():
        prefix = "_generated_var"
        uid = core.unique_integer(prefix)  # unique during whole process.
        return "_".join([prefix, str(uid)])

    @staticmethod
    def _convert_np_dtype_to_dtype_(np_dtype):
        dtype = np.dtype(np_dtype)
        if dtype == np.float32:
            return core.DataType.FP32
        elif dtype == np.float64:
            return core.DataType.FP64
        elif dtype == np.float16:
            return core.DataType.FP16
        elif dtype == np.int32:
            return core.DataType.INT32
        elif dtype == np.int16:
            return core.DataType.INT16
        elif dtype == np.int64:
            return core.DataType.INT64
        elif dtype == np.bool:
            return core.DataType.BOOL
        else:
            raise ValueError("Not supported numpy dtype " + str(dtype))


def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
    :return: A list of registered OpProto.
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
            '_instance'), 'Please use `instance()` to get OpProtoHolder opject!'
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
        return self.op_proto_map[type]


class Operator(object):
    def __init__(self,
                 block,
                 desc,
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
        self.desc = desc
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
        self.desc.set_type(type)
        proto = OpProtoHolder.instance().get_op_proto(type)

        def find_name(var_list, name):
            for var_name in var_list:
                if var_name == name:
                    return True
            return False

        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
                    in_argus = inputs[in_proto.name]
                    if not isinstance(in_argus, list):
                        in_argus = [in_argus]
                    if not in_proto.duplicable and len(in_argus) > 1:
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
                            % (in_proto.name, len(in_argus)))
                    in_argu_names = []
                    for argu in in_argus:
                        in_argu_names.append(argu.name)
                    self.desc.set_input(in_proto.name, in_argu_names)
                else:
                    self.desc.set_input(in_proto.name, [])

        if outputs is not None:
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
                raise ValueError(
                    "Incorrect setting for output(s) of operator \"%s\". Need: [%s] Given: [%s]"
                    % (type, ", ".join(str(e) for e in need), ", ".join(
                        str(e) for e in given)))

            for out_proto in proto.outputs:
                out_argus = outputs[out_proto.name]
                if not isinstance(out_argus, list):
                    out_argus = [out_argus]
                if not out_proto.duplicable and len(out_argus) > 1:
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
                        (out_proto.name, len(out_argus)))
                out_argu_names = []
                for argu in out_argus:
                    out_argu_names.append(argu.name)
                    argu.op = self
                self.desc.set_output(out_proto.name, out_argu_names)

        if attrs is not None:
            if not isinstance(attrs, dict):
                raise TypeError("'attrs' should be a dict.")
            for attr in proto.attrs:
                attr_name = attr.name
                if (not attr_name in attrs) or (attrs[attr_name] is None):
                    continue
                if isinstance(attrs[attr_name], Block):
                    self.desc.set_block_attr(attr_name, attrs[attr_name].desc)
                else:
                    self.desc.set_attr(attr_name, attrs[attr_name])

        self.desc.check_attrs()
        no_kernel_op_set = {
            'feed', 'fetch', 'save', 'load', 'recurrent',
            'rnn_memory_helper_grad'
        }
        if type not in no_kernel_op_set:
            self.desc.infer_var_type(self.block.desc)
            self.desc.infer_shape(self.block.desc)

    def __str__(self):
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
        return _debug_string_(proto)

    __repr__ = __str__

    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
        return self.desc.input(name)

    @property
    def input_names(self):
        return self.desc.input_names()

    def output(self, name):
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

    def has_attr(self, name):
        return self.desc.has_attr(name)

    def attr_type(self, name):
        return self.desc.attr_type(name)

    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
        return self.desc.attr(name)

    def block_attr(self, name):
        return self.desc.block_attr(name)


class Block(object):
    def __init__(self, program, idx):
        self.desc = program.desc.block(idx)
        self.vars = dict()  # var_name --> var
        self.ops = collections.deque()  # operator list
        self.program = program

    def __str__(self):
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.BlockDesc.FromString(str(protostr))
        return _debug_string_(proto)

    __repr__ = __str__

    @property
    def parent_idx(self):
        return self.desc.parent

    @property
    def idx(self):
        return self.desc.id

    def var(self, name):
        if not isinstance(name, basestring):
            raise TypeError()
        v = self.vars.get(name, None)
        if v is None:
            raise ValueError("var %s not in this block" % name)
        return v

    def all_parameters(self):
        return {v for k, v in self.vars.iteritems() if isinstance(v, Parameter)}

    def create_var(self, *args, **kwargs):
        var = Variable(self, *args, **kwargs)
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
        return var

    def has_var(self, name):
        return name in self.vars

    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
        param = Parameter(global_block, *args, **kwargs)
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
        return param

    def append_op(self, *args, **kwargs):
        op_desc = self.desc.append_op()
        op = Operator(self, op_desc, *args, **kwargs)
        self.ops.append(op)
        return op

    def prepend_op(self, *args, **kwargs):
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
        self.ops.appendleft(op)
        return op

    def sync_with_cpp(self):
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

        # sync operators from cpp
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.appendleft(op)

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]


class Program(object):
    def __init__(self):
        self.desc = core.ProgramDesc()
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0

    def __str__(self):
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.ProgramDesc.FromString(str(protostr))
        return _debug_string_(proto)

    def clone(self):
        p = Program()
        p.desc = core.ProgramDesc(self.desc)
        p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
        p.sync_with_cpp()
        return p

    def prune(self, targets):
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    t = t.op
                else:
                    raise ValueError(
                        "All targets of prune() can only be Variable or Operator."
                    )

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

    @staticmethod
    def parse_from_string(binary_str):
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
        p.sync_with_cpp()
        return p

    def __repr__(self):
        return str(self)

    def global_block(self):
        return self.blocks[0]

    def block(self, index):
        return self.blocks[index]

    def current_block(self):
        return self.blocks[self.current_block_idx]

    def append_backward(self, target, no_grad_set=None):
        """
        return map(param_name -> (grad_name, block_index, op_index))
        """
        assert isinstance(target, Variable)
        if no_grad_set is None:
            no_grad_set = set()
        param_to_grad_info = self.desc.append_backward(target.desc, no_grad_set)
        self.sync_with_cpp()
        return param_to_grad_info

    def create_block(self):
        new_block_idx = len(self.blocks)
        self.desc.append_block(self.current_block().desc)
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx

    def sync_with_cpp(self):
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

    def list_vars(self):
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var


class Parameter(Variable):
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)


# program is a global instance.
g_main_program = Program()
g_startup_program = Program()
反馈
建议
客服 返回
顶部