1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import paddle.v2.framework.core as core
import paddle.v2.framework.proto.framework_pb2 as framework_pb2
import collections
import numpy as np
import copy
__all__ = ['Block', 'Variable', 'Program', 'Operator']
def unique_name(prefix):
uid = core.unique_integer(prefix) # unique during whole process.
return "_".join([prefix, str(uid)])
def _debug_string_(proto):
error_fields = list()
if not proto.IsInitialized(error_fields):
raise ValueError("{0} are not initialized\nThe message is {1}".format(
error_fields, proto))
return proto.__str__()
class Variable(object):
def __init__(self,
block,
type=core.VarDesc.VarType.LOD_TENSOR,
name=None,
shape=None,
dtype=None,
lod_level=None,
persistable=None,
stop_gradient=False,
**kwargs):
self.block = block
if name is None:
name = Variable._unique_var_name_()
is_new_var = False
self.desc = self.block.desc.find_var(name)
if self.desc is None:
self.desc = self.block.desc.var(name)
is_new_var = True
if is_new_var:
self.desc.set_type(type)
elif self.desc.type() != type:
raise ValueError("Variable {0} has been created before. The "
"previous type is {1}; the new type is {2}. They"
" are not matched".format(self.name,
self.desc.type(), type))
if shape is not None:
if is_new_var:
self.desc.set_shape(shape)
else:
old_shape = self.shape
shape = tuple(shape)
if shape != old_shape:
raise ValueError(
"Variable {0} has been created before. the previous "
"shape is {1}; the new shape is {2}. They are not "
"matched.".format(self.name, old_shape, shape))
if dtype is not None:
if not isinstance(dtype, core.DataType):
dtype = Variable._convert_np_dtype_to_dtype_(dtype)
if is_new_var:
self.desc.set_data_type(dtype)
else:
old_dtype = self.data_type
if dtype != old_dtype:
raise ValueError("Variable {0} has been created before. "
"The previous data type is {1}; the new "
"data type is {2}. They are not "
"matched.".format(self.name, old_dtype,
dtype))
if lod_level is not None:
if is_new_var:
self.desc.set_lod_level(lod_level)
else:
if lod_level != self.lod_level:
raise ValueError("Variable {0} has been created before. "
"The previous lod_level is {1}; the new "
"lod_level is {2}. They are not "
"matched".format(self.name, self.lod_level,
lod_level))
if persistable is not None:
if is_new_var:
self.desc.set_persistable(persistable)
else:
if persistable != self.persistable:
raise ValueError(
"Variable {0} has been created before."
"The previous persistable is {1}; the new "
"persistable is {2}. They are not matched".format(
self.name, self.persistable, persistable))
self.block.vars[name] = self
self.op = None
self.stop_gradient = stop_gradient
def __str__(self):
protostr = self.desc.serialize_to_string()
proto = framework_pb2.VarDesc.FromString(str(protostr))
return _debug_string_(proto)
__repr__ = __str__
@property
def persistable(self):
return self.desc.persistable()
@persistable.setter
def persistable(self, p):
self.desc.set_persistable(p)
@property
def name(self):
return self.desc.name()
@property
def shape(self):
# convert to tuple, make it as same as numpy API.
return tuple(self.desc.shape())
@property
def data_type(self):
return self.desc.data_type()
@property
def lod_level(self):
return self.desc.lod_level()
@property
def type(self):
return self.desc.type()
@staticmethod
def _unique_var_name_():
prefix = "_generated_var"
uid = core.unique_integer(prefix) # unique during whole process.
return "_".join([prefix, str(uid)])
@staticmethod
def _convert_np_dtype_to_dtype_(np_dtype):
dtype = np.dtype(np_dtype)
if dtype == np.float32:
return core.DataType.FP32
elif dtype == np.float64:
return core.DataType.FP64
elif dtype == np.float16:
return core.DataType.FP16
elif dtype == np.int32:
return core.DataType.INT32
elif dtype == np.int16:
return core.DataType.INT16
elif dtype == np.int64:
return core.DataType.INT64
elif dtype == np.bool:
return core.DataType.BOOL
else:
raise ValueError("Not supported numpy dtype " + str(dtype))
def get_all_op_protos():
"""
Get all registered op proto from PaddlePaddle C++ end.
:return: A list of registered OpProto.
"""
protostrs = core.get_all_op_protos()
ret_values = []
for pbstr in protostrs:
op_proto = framework_pb2.OpProto.FromString(str(pbstr))
ret_values.append(op_proto)
return ret_values
class OpProtoHolder(object):
@classmethod
def instance(cls):
if not hasattr(cls, '_instance'):
cls._instance = cls()
return cls._instance
def __init__(self):
assert not hasattr(
self.__class__,
'_instance'), 'Please use `instance()` to get OpProtoHolder opject!'
op_protos = get_all_op_protos()
self.op_proto_map = {}
for proto in op_protos:
self.op_proto_map[proto.type] = proto
def get_op_proto(self, type):
if type not in self.op_proto_map:
raise ValueError("Operator \"%s\" has not been registered." % type)
return self.op_proto_map[type]
class Operator(object):
def __init__(self,
block,
desc,
type=None,
inputs=None,
outputs=None,
attrs=None):
self.block = block
self.desc = desc
if len(self.desc.type()) != 0:
return
if type is None:
raise ValueError(
"`type` to initilized an Operator can not be None.")
self.desc.set_type(type)
proto = OpProtoHolder.instance().get_op_proto(type)
def find_name(var_list, name):
for var_name in var_list:
if var_name == name:
return True
return False
if inputs is not None:
for in_proto in proto.inputs:
found = find_name(inputs, in_proto.name)
assert found or in_proto.dispensable, "Input {} not found".format(
in_proto.name)
if found:
in_argus = inputs[in_proto.name]
if not isinstance(in_argus, list):
in_argus = [in_argus]
if not in_proto.duplicable and len(in_argus) > 1:
raise ValueError(
"Input %s expects only one input, but %d are given."
% (in_proto.name, len(in_argus)))
in_argu_names = []
for argu in in_argus:
in_argu_names.append(argu.name)
self.desc.set_input(in_proto.name, in_argu_names)
else:
self.desc.set_input(in_proto.name, [])
if outputs is not None:
given = set()
need = set()
for n in outputs:
given.add(n)
for m in proto.outputs:
need.add(m.name)
if not given == need:
raise ValueError(
"Incorrect setting for output(s) of operator \"%s\". Need: [%s] Given: [%s]"
% (type, ", ".join(str(e) for e in need), ", ".join(
str(e) for e in given)))
for out_proto in proto.outputs:
out_argus = outputs[out_proto.name]
if not isinstance(out_argus, list):
out_argus = [out_argus]
if not out_proto.duplicable and len(out_argus) > 1:
raise ValueError(
"Output %s expects only one output, but %d are given." %
(out_proto.name, len(out_argus)))
out_argu_names = []
for argu in out_argus:
out_argu_names.append(argu.name)
argu.op = self
self.desc.set_output(out_proto.name, out_argu_names)
if attrs is not None:
if not isinstance(attrs, dict):
raise TypeError("'attrs' should be a dict.")
for attr in proto.attrs:
attr_name = attr.name
if (not attr_name in attrs) or (attrs[attr_name] is None):
continue
if isinstance(attrs[attr_name], Block):
self.desc.set_block_attr(attr_name, attrs[attr_name].desc)
else:
self.desc.set_attr(attr_name, attrs[attr_name])
self.desc.check_attrs()
no_kernel_op_set = {
'feed', 'fetch', 'save', 'load', 'recurrent',
'rnn_memory_helper_grad'
}
if type not in no_kernel_op_set:
self.desc.infer_var_type(self.block.desc)
self.desc.infer_shape(self.block.desc)
def __str__(self):
protostr = self.desc.serialize_to_string()
proto = framework_pb2.OpDesc.FromString(str(protostr))
return _debug_string_(proto)
__repr__ = __str__
@property
def type(self):
return self.desc.type()
def input(self, name):
return self.desc.input(name)
@property
def input_names(self):
return self.desc.input_names()
def output(self, name):
return self.desc.output(name)
@property
def output_names(self):
return self.desc.output_names()
@property
def idx(self):
for i, op in enumerate(self.block.ops):
if op == self:
return i
raise ValueError(
"Can't find op itself in it's block. It could be a bug of Paddle.")
def has_attr(self, name):
return self.desc.has_attr(name)
def attr_type(self, name):
return self.desc.attr_type(name)
@property
def attr_names(self):
return self.desc.attr_names()
def attr(self, name):
return self.desc.attr(name)
def block_attr(self, name):
return self.desc.block_attr(name)
class Block(object):
def __init__(self, program, idx):
self.desc = program.desc.block(idx)
self.vars = dict() # var_name --> var
self.ops = collections.deque() # operator list
self.program = program
def __str__(self):
protostr = self.desc.serialize_to_string()
proto = framework_pb2.BlockDesc.FromString(str(protostr))
return _debug_string_(proto)
__repr__ = __str__
@property
def parent_idx(self):
return self.desc.parent
@property
def idx(self):
return self.desc.id
def var(self, name):
if not isinstance(name, basestring):
raise TypeError()
v = self.vars.get(name, None)
if v is None:
raise ValueError("var %s not in this block" % name)
return v
def all_parameters(self):
return {v for k, v in self.vars.iteritems() if isinstance(v, Parameter)}
def create_var(self, *args, **kwargs):
var = Variable(self, *args, **kwargs)
if 'initializer' in kwargs:
kwargs['initializer'](var, self)
return var
def has_var(self, name):
return name in self.vars
def create_parameter(self, *args, **kwargs):
global_block = self.program.global_block()
param = Parameter(global_block, *args, **kwargs)
if 'initializer' in kwargs:
kwargs['initializer'](param, self)
return param
def append_op(self, *args, **kwargs):
op_desc = self.desc.append_op()
op = Operator(self, op_desc, *args, **kwargs)
self.ops.append(op)
return op
def prepend_op(self, *args, **kwargs):
op_desc = self.desc.prepend_op()
op = Operator(self, op_desc, *args, **kwargs)
self.ops.appendleft(op)
return op
def sync_with_cpp(self):
# sync variables from cpp
for var in self.desc.all_vars():
if not self.has_var(var.name()):
self.create_var(name=var.name(), desc=var, type=var.type())
# sync operators from cpp
ops_in_cpp = []
for op_idx in range(0, self.desc.op_size()):
ops_in_cpp.append(self.desc.op(op_idx))
if len(self.ops) != 0:
first_op_in_python = self.ops[0].desc
last_op_in_python = self.ops[len(self.ops) - 1].desc
start_index = None
end_index = None
for index in range(len(ops_in_cpp)):
if first_op_in_python == ops_in_cpp[index]:
start_index = index
if last_op_in_python == ops_in_cpp[index]:
end_index = index
assert start_index is not None
assert end_index is not None
assert start_index <= end_index
else:
start_index = 0
end_index = -1
# sync ops append to the head of cpp_ops
for index in range((start_index - 1 - 1), -1, -1):
op_desc = ops_in_cpp[index]
op = Operator(self, op_desc)
self.ops.appendleft(op)
# sync ops append to the end of cpp_ops
for index in range((end_index + 1), len(ops_in_cpp)):
op_desc = ops_in_cpp[index]
op = Operator(self, op_desc)
self.ops.append(op)
assert len(self.ops) == len(ops_in_cpp)
for index in range(len(self.ops)):
assert self.ops[index].desc == ops_in_cpp[index]
class Program(object):
def __init__(self):
self.desc = core.ProgramDesc()
self.blocks = [Block(self, 0)]
self.current_block_idx = 0
def __str__(self):
protostr = self.desc.serialize_to_string()
proto = framework_pb2.ProgramDesc.FromString(str(protostr))
return _debug_string_(proto)
def clone(self):
p = Program()
p.desc = core.ProgramDesc(self.desc)
p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
p.sync_with_cpp()
return p
def prune(self, targets):
if not isinstance(targets, list):
targets = [targets]
targets_idx = []
for t in targets:
if not isinstance(t, Operator):
if isinstance(t, Variable):
t = t.op
else:
raise ValueError(
"All targets of prune() can only be Variable or Operator."
)
targets_idx.append([t.block.idx, t.idx])
res = Program()
res.desc = core.prune(self.desc, targets_idx)
res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
res.sync_with_cpp()
return res
@staticmethod
def parse_from_string(binary_str):
p = Program()
p.desc = core.ProgramDesc(binary_str)
p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
p.sync_with_cpp()
return p
def __repr__(self):
return str(self)
def global_block(self):
return self.blocks[0]
def block(self, index):
return self.blocks[index]
def current_block(self):
return self.blocks[self.current_block_idx]
def append_backward(self, target, no_grad_set=None):
"""
return map(param_name -> (grad_name, block_index, op_index))
"""
assert isinstance(target, Variable)
if no_grad_set is None:
no_grad_set = set()
param_to_grad_info = self.desc.append_backward(target.desc, no_grad_set)
self.sync_with_cpp()
return param_to_grad_info
def create_block(self):
new_block_idx = len(self.blocks)
self.desc.append_block(self.current_block().desc)
self.current_block_idx = new_block_idx
self.blocks.append(Block(self, self.current_block_idx))
return self.current_block()
def rollback(self):
self.current_block_idx = self.current_block().parent_idx
def sync_with_cpp(self):
for block_idx in range(len(self.blocks), self.desc.num_blocks()):
self.blocks.append(Block(self, block_idx))
for block in self.blocks:
block.sync_with_cpp()
def list_vars(self):
for each_block in self.blocks:
for each_var in each_block.vars.itervalues():
yield each_var
class Parameter(Variable):
def __init__(self, block, shape, dtype, **kwargs):
if shape is None or dtype is None:
raise ValueError("Parameter must set shape and dtype")
if len(shape) == 0:
raise ValueError("Parameter shape cannot be empty")
for each in shape:
if each < 0:
raise ValueError("Parameter shape should not be related with "
"batch-size")
Variable.__init__(
self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
self.trainable = kwargs.get('trainable', True)
self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})
self.regularizer = kwargs.get('regularizer', None)
# program is a global instance.
g_main_program = Program()
g_startup_program = Program()