test_chunk_eval_op.py 10.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21 22
import numpy as np
from paddle.fluid import Program, program_guard
from paddle import fluid
G
guosheng 已提交
23 24


25
class Segment(object):
G
guosheng 已提交
26 27 28 29 30 31
    def __init__(self, chunk_type, start_idx, end_idx):
        self.chunk_type = chunk_type
        self.start_idx = start_idx
        self.end_idx = end_idx

    def __str__(self):
32 33
        return '(Segment: %s, %s, %s)' % (self.chunk_type, self.start_idx,
                                          self.end_idx)
G
guosheng 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

    __repr__ = __str__


class TestChunkEvalOp(OpTest):
    num_sequences = 5
    batch_size = 50

    def parse_scheme(self):
        if self.scheme == 'IOB':
            self.num_tag_types = 2
        elif self.scheme == 'IOE':
            self.num_tag_types = 2

    def fill_with_chunks(self, data, chunks):
        for chunk in chunks:
            if self.scheme == 'IOB':
                data[chunk.start_idx] = chunk.chunk_type * self.num_tag_types
                data[chunk.start_idx + 1:
                     chunk.end_idx] = chunk.chunk_type * self.num_tag_types + (
                         self.num_tag_types - 1)
                data[chunk.end_idx] = chunk.chunk_type * self.num_tag_types + (
                    self.num_tag_types - 1
                ) if chunk.start_idx < chunk.end_idx else data[chunk.start_idx]
            elif self.scheme == 'IOE':
                data[chunk.start_idx:
                     chunk.end_idx] = chunk.chunk_type * self.num_tag_types
                data[chunk.end_idx] = chunk.chunk_type * self.num_tag_types + (
                    self.num_tag_types - 1)

    def rand_chunks(self, starts, num_chunks):
        if num_chunks < 0:
            num_chunks = np.random.randint(starts[-1])
        chunks = []
        # generate chunk beginnings
        chunk_begins = sorted(
            np.random.choice(
71
                list(range(starts[-1])), num_chunks, replace=False))
G
guosheng 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        seq_chunk_begins = []
        begin_idx = 0
        # divide chunks into sequences
        for i in range(len(starts) - 1):
            tmp_chunk_begins = []
            while begin_idx < len(chunk_begins) and chunk_begins[
                    begin_idx] < starts[i + 1]:
                tmp_chunk_begins.append(chunk_begins[begin_idx])
                begin_idx += 1
            seq_chunk_begins.append(tmp_chunk_begins)
        # generate chunk ends
        chunk_ends = []
        for i in range(len(seq_chunk_begins)):
            for j in range(len(seq_chunk_begins[i])):
                low = seq_chunk_begins[i][j]
                high = seq_chunk_begins[i][j + 1] if j < len(seq_chunk_begins[
                    i]) - 1 else starts[i + 1]
                chunk_ends.append(np.random.randint(low, high))
        # generate chunks
        for chunk_pos in zip(chunk_begins, chunk_ends):
            chunk_type = np.random.randint(self.num_chunk_types)
93
            chunks.append(Segment(chunk_type, *chunk_pos))
G
guosheng 已提交
94 95 96 97 98 99 100
        return chunks

    def gen_chunks(self, infer, label, starts):
        chunks = self.rand_chunks(starts,
                                  self.num_infer_chunks + self.num_label_chunks
                                  - self.num_correct_chunks)
        correct_chunks = np.random.choice(
101
            list(range(len(chunks))), self.num_correct_chunks, replace=False)
G
guosheng 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        infer_chunks = np.random.choice(
            [x for x in range(len(chunks)) if x not in correct_chunks],
            self.num_infer_chunks - self.num_correct_chunks,
            replace=False)
        infer_chunks = sorted(correct_chunks.tolist() + infer_chunks.tolist())
        label_chunks = np.random.choice(
            [x for x in range(len(chunks)) if x not in infer_chunks],
            self.num_label_chunks - self.num_correct_chunks,
            replace=False)
        label_chunks = sorted(correct_chunks.tolist() + label_chunks.tolist())
        self.fill_with_chunks(infer, [chunks[idx] for idx in infer_chunks])
        self.fill_with_chunks(label, [chunks[idx] for idx in label_chunks])
        # exclude types in excluded_chunk_types
        if len(self.excluded_chunk_types) > 0:
            for idx in correct_chunks:
                if chunks[idx].chunk_type in self.excluded_chunk_types:
                    self.num_correct_chunks -= 1
            for idx in infer_chunks:
                if chunks[idx].chunk_type in self.excluded_chunk_types:
                    self.num_infer_chunks -= 1
            for idx in label_chunks:
                if chunks[idx].chunk_type in self.excluded_chunk_types:
                    self.num_label_chunks -= 1
        return self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks

    def set_confs(self):
        # Use the IOB scheme and labels with 2 chunk types
        self.scheme = 'IOB'
        self.num_chunk_types = 2
        self.excluded_chunk_types = []
        self.other_chunk_type = self.num_chunk_types
        self.attrs = {
            'num_chunk_types': self.num_chunk_types,
            'chunk_scheme': self.scheme,
            'excluded_chunk_types': self.excluded_chunk_types
        }
        self.parse_scheme()
        self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = 4, 5, 9

    def set_data(self):
Q
Qiao Longfei 已提交
142
        infer = np.zeros((self.batch_size, )).astype('int64')
G
guosheng 已提交
143 144 145
        infer.fill(self.num_chunk_types * self.num_tag_types)
        label = np.copy(infer)
        starts = np.random.choice(
146 147
            list(range(1, self.batch_size)),
            self.num_sequences - 1,
G
guosheng 已提交
148 149 150 151 152
            replace=False).tolist()
        starts.extend([0, self.batch_size])
        starts = sorted(starts)
        self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = self.gen_chunks(
            infer, label, starts)
153 154 155
        lod = []
        for i in range(len(starts) - 1):
            lod.append(starts[i + 1] - starts[i])
156
        self.set_input(infer, label, lod)
G
guosheng 已提交
157 158 159 160 161 162 163 164
        precision = float(
            self.num_correct_chunks
        ) / self.num_infer_chunks if self.num_infer_chunks else 0
        recall = float(self.num_correct_chunks
                       ) / self.num_label_chunks if self.num_label_chunks else 0
        f1 = float(2 * precision * recall) / (
            precision + recall) if self.num_correct_chunks else 0
        self.outputs = {
165 166 167 168 169
            'Precision': np.asarray(
                [precision], dtype='float32'),
            'Recall': np.asarray(
                [recall], dtype='float32'),
            'F1-Score': np.asarray(
G
guosheng 已提交
170 171 172 173 174 175 176
                [f1], dtype='float32'),
            'NumInferChunks': np.asarray(
                [self.num_infer_chunks], dtype='int64'),
            'NumLabelChunks': np.asarray(
                [self.num_label_chunks], dtype='int64'),
            'NumCorrectChunks': np.asarray(
                [self.num_correct_chunks], dtype='int64')
G
guosheng 已提交
177 178
        }

179 180 181
    def set_input(self, infer, label, lod):
        self.inputs = {'Inference': (infer, [lod]), 'Label': (label, [lod])}

G
guosheng 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    def setUp(self):
        self.op_type = 'chunk_eval'
        self.set_confs()
        self.set_data()

    def test_check_output(self):
        self.check_output()


class TestChunkEvalOpWithExclude(TestChunkEvalOp):
    def set_confs(self):
        # Use the IOE scheme and labels with 3 chunk types
        self.scheme = 'IOE'
        self.num_chunk_types = 3
        self.excluded_chunk_types = [1]
        self.other_chunk_type = self.num_chunk_types
        self.attrs = {
            'num_chunk_types': self.num_chunk_types,
            'chunk_scheme': self.scheme,
            'excluded_chunk_types': self.excluded_chunk_types
        }
        self.parse_scheme()
        self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = 15, 18, 20


207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
class TestChunkEvalOpWithTensorInput(TestChunkEvalOp):
    def set_input(self, infer, label, lod):
        max_len = np.max(lod)
        pad_infer = []
        pad_label = []
        start = 0
        for i in range(len(lod)):
            end = lod[i] + start
            pad_infer.append(
                np.pad(infer[start:end], (0, max_len - lod[i]),
                       'constant',
                       constant_values=(-1, )))
            pad_label.append(
                np.pad(label[start:end], (0, max_len - lod[i]),
                       'constant',
                       constant_values=(-1, )))
            start = end

        pad_infer = np.expand_dims(np.array(pad_infer, dtype='int64'), 2)
        pad_label = np.expand_dims(np.array(pad_label, dtype='int64'), 2)
        lod = np.array(lod, dtype='int64')
        self.inputs = {
            'Inference': pad_infer,
            'Label': pad_label,
            'SeqLength': lod
        }


235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
class TestChunkEvalOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_input():
                input_data = np.random.random(1, 1).astype("int64")
                label_data = np.random.random(1).astype("int64")
                fluid.layers.chunk_eval(
                    input=input_data,
                    label=label_data,
                    chunk_scheme="IOB",
                    num_chunk_types=3)

            self.assertRaises(TypeError, test_input)

            def test_label():
                input_ = fluid.data(
                    name="input", shape=[None, 1], dtype="int64")
                label_data = np.random.random(1).astype("int64")
                fluid.layers.chunk_eval(
                    input=input_,
                    label=label_data,
                    chunk_scheme="IOB",
                    num_chunk_types=3)

            self.assertRaises(TypeError, test_label)

            def test_type():
                in_data = fluid.data(
                    name="input_", shape=[None, 1], dtype="int32")
                label = fluid.data(name="label_", shape=[1], dtype="int64")
                fluid.layers.chunk_eval(
                    input=in_data,
                    label=label,
                    chunk_scheme="IOB",
                    num_chunk_types=3)

            self.assertRaises(TypeError, test_type)


G
guosheng 已提交
275 276
if __name__ == '__main__':
    unittest.main()